home *** CD-ROM | disk | FTP | other *** search
Wrap
Text File | 1992-07-06 | 216.9 KB | 8,191 lines
(*^ ::[paletteColors = 128; showRuler; currentKernel; fontset = title, inactive, noPageBreakBelow, nohscroll, preserveAspect, groupLikeTitle, center, M7, L1, e8, 28, "Times"; ; fontset = subtitle, inactive, noPageBreakBelow, nohscroll, preserveAspect, groupLikeTitle, center, M7, L1, e6, 22, "Times"; ; fontset = subsubtitle, inactive, noPageBreakBelow, nohscroll, preserveAspect, groupLikeTitle, center, M7, L1, e6, 16, "Times"; ; fontset = section, inactive, noPageBreakBelow, nohscroll, preserveAspect, groupLikeSection, grayBox, M22, L1, a20, 22, "Times"; ; fontset = subsection, inactive, noPageBreakBelow, nohscroll, preserveAspect, groupLikeSection, blackBox, M19, L1, a15, 16, "Times"; ; fontset = subsubsection, inactive, noPageBreakBelow, nohscroll, preserveAspect, groupLikeSection, whiteBox, M18, L1, a12, 14, "Times"; ; fontset = text, inactive, nohscroll, noKeepOnOnePage, preserveAspect, M7, L1, 14, "Times"; ; fontset = smalltext, inactive, nohscroll, noKeepOnOnePage, preserveAspect, M7, L1, 14, "Times"; ; fontset = input, noPageBreakBelow, nowordwrap, preserveAspect, groupLikeInput, M42, N23, L1, 14, "Courier"; ; fontset = output, output, inactive, noPageBreakBelow, nowordwrap, preserveAspect, groupLikeOutput, M42, N23, L-5, 14, "Courier"; ; fontset = message, inactive, noPageBreakBelow, nowordwrap, preserveAspect, groupLikeOutput, M42, N23, L1, 14, "Courier"; ; fontset = print, inactive, noPageBreakBelow, nowordwrap, preserveAspect, groupLikeOutput, M42, N23, L1, 14, "Courier"; ; fontset = info, inactive, noPageBreakBelow, nowordwrap, preserveAspect, groupLikeOutput, M42, N23, L1, 14, "Courier"; ; fontset = postscript, PostScript, formatAsPostScript, output, inactive, noPageBreakBelow, nowordwrap, preserveAspect, groupLikeGraphics, M7, l34, w282, h287, L1, 14, "Courier"; ; fontset = name, inactive, nohscroll, noKeepOnOnePage, preserveAspect, M7, L1, 12; fontset = header, inactive, nohscroll, noKeepOnOnePage, preserveAspect, M7, L1, 16, "Times"; ; fontset = Left Header, nohscroll, cellOutline, 14, "Times"; ; fontset = footer, inactive, nohscroll, noKeepOnOnePage, preserveAspect, center, M7, L1, 14, "Times"; ; fontset = Left Footer, cellOutline, blackBox, 14, "Times"; ; fontset = help, inactive, nohscroll, noKeepOnOnePage, preserveAspect, M7, L1, 12; fontset = clipboard, inactive, nohscroll, noKeepOnOnePage, preserveAspect, M7, L1, 14, "Times"; ; fontset = completions, inactive, nohscroll, noKeepOnOnePage, preserveAspect, M7, L1, 14, "Courier"; ; fontset = special1, inactive, nohscroll, noKeepOnOnePage, preserveAspect, M7, L1, 14, "Times"; ; fontset = special2, inactive, nohscroll, noKeepOnOnePage, preserveAspect, M7, L1, 14, "Times"; ; fontset = special3, inactive, nohscroll, noKeepOnOnePage, preserveAspect, M7, L1, 14, "Times"; ; fontset = special4, inactive, nohscroll, noKeepOnOnePage, preserveAspect, M7, L1, 14, "Times"; ; fontset = special5, inactive, nohscroll, noKeepOnOnePage, preserveAspect, M7, L1, 14, "Times"; ;] :[font = title; inactive; preserveAspect; rightWrapOffset = 529; fontColorBlue = 65535; ] COSY_PAK Control Systems Analysis Package for Mathematica ;[s] 2:0,0;49,1;61,-1; 2:1,25,19,Times,1,28,0,0,0;1,25,19,Times,2,28,0,0,0; :[font = subtitle; inactive; preserveAspect; rightWrapOffset = 529; ] By C.K. Chen N. Sreenath 1992 :[font = message; inactive; preserveAspect; center; rightWrapOffset = 529; ] Systems Engineering Department Case School of Engineering Case Western Reserve University Cleveland, OH, 44106-7070 :[font = message; inactive; preserveAspect; center; rightWrapOffset = 529; ] Support from CWRU Information and Network Services - Dr. Ray Neff Case Alumni Association The Lilly Foundation :[font = input; preserveAspect; rightWrapOffset = 529; ] :[font = subtitle; inactive; preserveAspect; rightWrapOffset = 529; ] Chapter 1 Introduction to Control Systems ;[s] 4:0,0;10,1;11,2;43,3;45,-1; 4:1,20,15,Times,1,22,65535,0,0;1,20,15,Times,1,22,0,0,0;1,20,15,Times,1,22,0,0,65535;1,16,12,Times,1,18,0,0,0; :[font = section; inactive; Cclosed; preserveAspect; rightWrapOffset = 529; startGroup; ] Initialization :[font = input; initialization; preserveAspect; rightWrapOffset = 529; ] *) (* Initialization of Path *) (* Example For UNIX machine (Default) *) $Path=Join[$Path, {"~/Library/Mathematica/Packages"}]; (* Example For IBM PC *) (* $Path=Join[$Path, {"c:\winmath\packages"}]; *) (* Example For MAC *) (* $Path=Join[$Path, {"My_Harddisk:Mathematica:Package"}]; *) (* :[font = input; initialization; preserveAspect; rightWrapOffset = 529; endGroup; ] *) Needs["COSYPAK`chap1`"] (* :[font = section; inactive; Cclosed; preserveAspect; rightWrapOffset = 529; startGroup; ] Acknowledgements :[font = text; inactive; preserveAspect; rightWrapOffset = 529; endGroup; ] Special thanks to Brian Evans of Georgia Tech for the LaPlace transform and signal packages which is a part of the Signal Processing Packages :Copyright: Copyright 1989-1991 by Brian L. Evans, Georgia Tech Research Corporation. The sections Signals, Forward Laplace Transforms, Inverse Laplace Transforms, Differential Equation With Zero-Valued Initial Conditions, and, Differential Equation With Initial Conditions of the material in this 01_Introduction COSY_PAK notebook has been borrowed from Brian Evans' Georgia Tech Signal Processing Packages notebook (see README file on how to get these packages). :[font = section; inactive; Cclosed; preserveAspect; rightWrapOffset = 529; startGroup; ] Analyticity :[font = text; inactive; preserveAspect; rightWrapOffset = 529; ] Definition :If G(s) and (dn G(s)/dsn) exists for n=1,2,3,... then G(s) is analytic. Cauchy-Reimaan Conditions : A test for analyticity at the point s = s+ j w is using the Cauchy-Reimaan conditions given below : ¶Gx(s)/ ¶s = ¶Gy(s)/ ¶w and ¶Gy(s)/ ¶s = -¶Gx(s)/ ¶w COSY_PAK Function ChekAnal[Transf, s, r, w,showder]: Checks the analyticity of the transfer function Transf(s) at the point at s=r+jw using the Cauchy-Reimaan conditions. If `showder=1' (optional) then the derivatives in the computation are shown. Examples for using the functions follow. Change the transfer function to any desired function and re-evaluate. Note : The variable `r' is used instead of greek character s and `w' is used instead of greek character w. Also r and w can be either numerical or symbolic values. ;[s] 34:0,0;11,1;88,2;113,3;218,4;219,5;226,6;228,7;231,8;232,9;239,10;241,11;247,12;248,13;255,14;257,15;261,16;262,17;269,18;271,19;273,20;290,21;292,22;317,23;324,24;325,25;419,26;445,27;527,28;566,29;704,30;705,31;749,32;750,33;814,-1; 34:1,12,9,Times,1,14,0,0,0;1,13,10,Times,0,14,0,0,0;1,12,9,Times,1,14,0,0,0;1,13,10,Times,0,14,0,0,0;1,0,0,Symbol,0,14,0,0,0;1,13,10,Times,0,14,0,0,0;1,0,0,Symbol,0,14,0,0,0;1,13,10,Times,0,14,0,0,0;1,0,0,Symbol,0,14,0,0,0;1,13,10,Times,0,14,0,0,0;1,0,0,Symbol,0,14,0,0,0;1,13,10,Times,0,14,0,0,0;1,0,0,Symbol,0,14,0,0,0;1,13,10,Times,0,14,0,0,0;1,0,0,Symbol,0,14,0,0,0;1,13,10,Times,0,14,0,0,0;1,0,0,Symbol,0,14,0,0,0;1,13,10,Times,0,14,0,0,0;1,0,0,Symbol,0,14,0,0,0;1,13,10,Times,0,14,0,0,0;1,12,9,Times,1,14,0,0,0;1,13,10,Times,0,14,0,0,0;1,12,9,Times,1,14,0,0,0;1,13,10,Times,2,14,0,0,0;1,12,9,Times,1,14,0,0,0;1,13,10,Times,0,14,0,0,0;1,12,9,Times,1,14,0,0,0;1,13,10,Times,0,14,0,0,0;1,12,9,Times,1,14,0,0,0;1,13,10,Times,0,14,0,0,0;1,0,0,Symbol,0,14,0,0,0;1,13,10,Times,0,14,0,0,0;1,0,0,Symbol,0,14,0,0,0;1,13,10,Times,0,14,0,0,0; :[font = subsubsection; inactive; Cclosed; preserveAspect; rightWrapOffset = 529; startGroup; ] Example :[font = input; Cclosed; preserveAspect; rightWrapOffset = 529; startGroup; ] gg = 1/(s+1); ChekAnal[gg,s,r,w,1] :[font = print; inactive; preserveAspect; rightWrapOffset = 529; endGroup; endGroup; ] 1 + r I w G(r + w I) = ----------------- - ----------------- 2 2 2 2 1 + 2 r + r + w 1 + 2 r + r + w The derivatives: 2 2 -1 - 2 r - r + w d Re[G(r + w I)] /dr = -------------------- 2 2 2 (1 + 2 r + r + w ) -2 (1 + r) w d Re[G(r + w I)] /dw = -------------------- 2 2 2 (1 + 2 r + r + w ) 2 (1 + r) w d Im[G(r + w I)] /dr = -------------------- 2 2 2 (1 + 2 r + r + w ) 2 2 -1 - 2 r - r + w d Im[G(r + w I)] /dw = -------------------- 2 2 2 (1 + 2 r + r + w ) 1 The Transfer function G(s)= ----- IS an analytical 1 + s function except at the singulality points: {-1} :[font = subsubsection; inactive; Cclosed; preserveAspect; rightWrapOffset = 529; startGroup; ] Example :[font = input; Cclosed; preserveAspect; rightWrapOffset = 529; startGroup; ] gg = (s+2)/(s+1)/(s+3); ChekAnal[gg,s,r,w] :[font = print; inactive; preserveAspect; rightWrapOffset = 529; endGroup; endGroup; endGroup; ] 2 2 (2 + r) (3 + 4 r + r + w ) G(r + w I) = --------------------------------------- + 2 2 2 2 (1 + 2 r + r + w ) (9 + 6 r + r + w ) 2 2 -I w (5 + 4 r + r + w ) --------------------------------------- 2 2 2 2 (1 + 2 r + r + w ) (9 + 6 r + r + w ) 2 + s The Transfer function G(s)= --------------- IS an analytical (1 + s) (3 + s) function except at the singulality points: {-1, -3} :[font = section; inactive; Cclosed; preserveAspect; rightWrapOffset = 529; startGroup; ] Poles and Zeros :[font = text; inactive; preserveAspect; rightWrapOffset = 529; ] We define Ordinary points : Values of s where G(s) is analytic. Singular points : Values of s where G(s) i s not analytic. Poles : Singular points of G(s) where G(s) and (dn G(s)/dsn) for n=1,2,3,... approach ` ¥ ' (infinity). If lim [G(s) (s+p)n] = finite, s->p for some n=1,2,... then s=p is called an n'th order pole. Zeros : lim [G(s)] =0, then s=z is a zero of G(s). s->z COSY_PAK Function PoleZeros[Transf, s]: Computes finite poles and zeros of the transfer function Transf . Returns {list of poles, list of zeros}. Q : Can you determine the order of the pole from the output of this function ? A : The order of the pole can be determined from the output by the number of times the pole value repeats. ;[s] 19:0,0;1,1;11,2;12,3;27,4;67,5;82,6;129,7;134,8;217,9;218,10;382,11;387,12;463,13;501,14;578,15;608,16;642,17;643,18;806,-1; 19:1,13,10,Times,0,14,0,0,0;1,12,9,Times,1,14,0,0,0;1,13,10,Times,0,14,0,0,0;1,12,9,Times,1,14,0,0,0;1,13,10,Times,0,14,0,0,0;1,12,9,Times,1,14,0,0,0;1,13,10,Times,0,14,0,0,0;1,12,9,Times,1,14,0,0,0;1,13,10,Times,0,14,0,0,0;1,0,0,Symbol,0,14,0,0,0;1,13,10,Times,0,14,0,0,0;1,12,9,Times,1,14,0,0,0;1,13,10,Times,0,14,0,0,0;1,12,9,Times,1,14,0,0,0;1,13,10,Times,0,14,0,0,0;1,12,9,Times,1,14,0,0,0;1,13,10,Times,0,14,0,0,0;1,11,8,Times,0,12,0,0,0;1,13,10,Times,0,14,0,0,0; :[font = subsubsection; inactive; Cclosed; preserveAspect; rightWrapOffset = 529; startGroup; ] Examples :[font = input; Cclosed; preserveAspect; rightWrapOffset = 529; startGroup; ] gg = (s+2)(s^2+10)/(s^6+232 s^5-4 s^4 +12 s^3 +123); results = PoleZeros[gg,s]; (* List of poles results[[1]] *) (* List of zeros results[[2]] *) :[font = print; inactive; preserveAspect; rightWrapOffset = 529; endGroup; endGroup; endGroup; ] 2 (2 + s) (10 + s ) The transfer function G(s)= -------------------------------- 3 4 5 6 123 + 12 s - 4 s + 232 s + s The Poles of G(s) is:{-232.017, -0.866551, -0.264287 - 0.84923 I, -0.264287 + 0.84923 I, 0.706293 - 0.523955 I, 0.706293 + 0.523955 I} The Zeros of G(s) is:{-2., 3.16228 I, -3.16228 I} :[font = section; inactive; Cclosed; preserveAspect; rightWrapOffset = 529; startGroup; ] Signals :[font = subsubsection; inactive; Cclosed; preserveAspect; rightWrapOffset = 529; startGroup; ] Dirac delta function :[font = text; inactive; preserveAspect; rightWrapOffset = 529; ] Delta[expr] is the Dirac delta function. The area under this functions is 1 but it only has value at the origin. That is, Integrate[ Delta[t] g[t], {t, t1, t2} ] is g[0] if t1 <= 0 <= t2, 0 otherwise. It differs from the Kronecker delta function Impulse[t]. ;[s] 11:0,0;12,1;18,2;41,3;121,4;162,5;164,6;170,7;220,8;237,9;245,10;257,-1; 11:1,12,9,Times,1,14,0,0,0;1,13,10,Times,0,14,0,0,0;1,12,9,Times,1,14,0,0,0;1,13,10,Times,0,14,0,0,0;1,12,9,Times,1,14,0,0,0;1,13,10,Times,0,14,0,0,0;1,12,9,Times,1,14,0,0,0;1,13,10,Times,0,14,0,0,0;1,12,9,Times,1,14,0,0,0;1,13,10,Times,0,14,0,0,0;1,12,9,Times,1,14,0,0,0; :[font = input; Cclosed; preserveAspect; rightWrapOffset = 529; startGroup; ] SignalPlot[Delta[t-1/2],{t,-1,1}, PlotLabel->"Dirac delta function"] ;[s] 3:0,0;50,1;70,2;73,-1; 3:1,11,9,Courier,1,14,0,0,0;1,12,9,Times,1,14,0,0,0;1,10,8,Courier,1,12,0,0,0; :[font = postscript; PostScript; formatAsPostScript; output; inactive; preserveAspect; rightWrapOffset = 529; pictureLeft = 17; pictureWidth = 389; pictureHeight = 239; ] %! %%Creator: Mathematica %%AspectRatio: 0.61803 MathPictureStart /Courier findfont 10 scalefont setfont % Scaling calculations 0.5 0.47619 0.014715 0.588604 [ [(-1)] 0.02381 0.01472 0 2 Msboxa [(-0.5)] 0.2619 0.01472 0 2 Msboxa [(0.5)] 0.7381 0.01472 0 2 Msboxa [(1)] 0.97619 0.01472 0 2 Msboxa [(t)] 1.025 0.01472 -1 0 Msboxa [(Dirac delta function)] 0.5 0.61803 0 -2 0 0 1 Mouter Mrotsboxa [(0.2)] 0.4875 0.13244 1 0 Msboxa [(0.4)] 0.4875 0.25016 1 0 Msboxa [(0.6)] 0.4875 0.36788 1 0 Msboxa [(0.8)] 0.4875 0.4856 1 0 Msboxa [(1)] 0.4875 0.60332 1 0 Msboxa [( )] 0.5 0.61803 0 -4 Msboxa [ -0.001 -0.001 0 0 ] [ 1.001 0.61903 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath %%Object: Graphics [ ] 0 setdash 0 setgray gsave gsave 0.002 setlinewidth 0.02381 0.01472 moveto 0.02381 0.02097 lineto stroke grestore [(-1)] 0.02381 0.01472 0 2 Mshowa gsave 0.002 setlinewidth 0.2619 0.01472 moveto 0.2619 0.02097 lineto stroke grestore [(-0.5)] 0.2619 0.01472 0 2 Mshowa gsave 0.002 setlinewidth 0.7381 0.01472 moveto 0.7381 0.02097 lineto stroke grestore [(0.5)] 0.7381 0.01472 0 2 Mshowa gsave 0.002 setlinewidth 0.97619 0.01472 moveto 0.97619 0.02097 lineto stroke grestore [(1)] 0.97619 0.01472 0 2 Mshowa gsave 0.001 setlinewidth 0.07143 0.01472 moveto 0.07143 0.01847 lineto stroke grestore gsave 0.001 setlinewidth 0.11905 0.01472 moveto 0.11905 0.01847 lineto stroke grestore gsave 0.001 setlinewidth 0.16667 0.01472 moveto 0.16667 0.01847 lineto stroke grestore gsave 0.001 setlinewidth 0.21429 0.01472 moveto 0.21429 0.01847 lineto stroke grestore gsave 0.001 setlinewidth 0.30952 0.01472 moveto 0.30952 0.01847 lineto stroke grestore gsave 0.001 setlinewidth 0.35714 0.01472 moveto 0.35714 0.01847 lineto stroke grestore gsave 0.001 setlinewidth 0.40476 0.01472 moveto 0.40476 0.01847 lineto stroke grestore gsave 0.001 setlinewidth 0.45238 0.01472 moveto 0.45238 0.01847 lineto stroke grestore gsave 0.001 setlinewidth 0.54762 0.01472 moveto 0.54762 0.01847 lineto stroke grestore gsave 0.001 setlinewidth 0.59524 0.01472 moveto 0.59524 0.01847 lineto stroke grestore gsave 0.001 setlinewidth 0.64286 0.01472 moveto 0.64286 0.01847 lineto stroke grestore gsave 0.001 setlinewidth 0.69048 0.01472 moveto 0.69048 0.01847 lineto stroke grestore gsave 0.001 setlinewidth 0.78571 0.01472 moveto 0.78571 0.01847 lineto stroke grestore gsave 0.001 setlinewidth 0.83333 0.01472 moveto 0.83333 0.01847 lineto stroke grestore gsave 0.001 setlinewidth 0.88095 0.01472 moveto 0.88095 0.01847 lineto stroke grestore gsave 0.001 setlinewidth 0.92857 0.01472 moveto 0.92857 0.01847 lineto stroke grestore [(t)] 1.025 0.01472 -1 0 Mshowa gsave 0.002 setlinewidth 0 0.01472 moveto 1 0.01472 lineto stroke grestore [(Dirac delta function)] 0.5 0.61803 0 -2 0 0 1 Mouter Mrotshowa gsave 0.002 setlinewidth 0.5 0.13244 moveto 0.50625 0.13244 lineto stroke grestore [(0.2)] 0.4875 0.13244 1 0 Mshowa gsave 0.002 setlinewidth 0.5 0.25016 moveto 0.50625 0.25016 lineto stroke grestore [(0.4)] 0.4875 0.25016 1 0 Mshowa gsave 0.002 setlinewidth 0.5 0.36788 moveto 0.50625 0.36788 lineto stroke grestore [(0.6)] 0.4875 0.36788 1 0 Mshowa gsave 0.002 setlinewidth 0.5 0.4856 moveto 0.50625 0.4856 lineto stroke grestore [(0.8)] 0.4875 0.4856 1 0 Mshowa gsave 0.002 setlinewidth 0.5 0.60332 moveto 0.50625 0.60332 lineto stroke grestore [(1)] 0.4875 0.60332 1 0 Mshowa gsave 0.001 setlinewidth 0.5 0.03826 moveto 0.50375 0.03826 lineto stroke grestore gsave 0.001 setlinewidth 0.5 0.0618 moveto 0.50375 0.0618 lineto stroke grestore gsave 0.001 setlinewidth 0.5 0.08535 moveto 0.50375 0.08535 lineto stroke grestore gsave 0.001 setlinewidth 0.5 0.10889 moveto 0.50375 0.10889 lineto stroke grestore gsave 0.001 setlinewidth 0.5 0.15598 moveto 0.50375 0.15598 lineto stroke grestore gsave 0.001 setlinewidth 0.5 0.17952 moveto 0.50375 0.17952 lineto stroke grestore gsave 0.001 setlinewidth 0.5 0.20307 moveto 0.50375 0.20307 lineto stroke grestore gsave 0.001 setlinewidth 0.5 0.22661 moveto 0.50375 0.22661 lineto stroke grestore gsave 0.001 setlinewidth 0.5 0.2737 moveto 0.50375 0.2737 lineto stroke grestore gsave 0.001 setlinewidth 0.5 0.29724 moveto 0.50375 0.29724 lineto stroke grestore gsave 0.001 setlinewidth 0.5 0.32079 moveto 0.50375 0.32079 lineto stroke grestore gsave 0.001 setlinewidth 0.5 0.34433 moveto 0.50375 0.34433 lineto stroke grestore gsave 0.001 setlinewidth 0.5 0.39142 moveto 0.50375 0.39142 lineto stroke grestore gsave 0.001 setlinewidth 0.5 0.41497 moveto 0.50375 0.41497 lineto stroke grestore gsave 0.001 setlinewidth 0.5 0.43851 moveto 0.50375 0.43851 lineto stroke grestore gsave 0.001 setlinewidth 0.5 0.46205 moveto 0.50375 0.46205 lineto stroke grestore gsave 0.001 setlinewidth 0.5 0.50914 moveto 0.50375 0.50914 lineto stroke grestore gsave 0.001 setlinewidth 0.5 0.53269 moveto 0.50375 0.53269 lineto stroke grestore gsave 0.001 setlinewidth 0.5 0.55623 moveto 0.50375 0.55623 lineto stroke grestore gsave 0.001 setlinewidth 0.5 0.57977 moveto 0.50375 0.57977 lineto stroke grestore [( )] 0.5 0.61803 0 -4 Mshowa gsave 0.002 setlinewidth 0.5 0 moveto 0.5 0.61803 lineto stroke grestore grestore gsave gsave gsave gsave 0.006 setlinewidth 0.02381 0.01472 moveto 0.06349 0.01472 lineto 0.10317 0.01472 lineto 0.14286 0.01472 lineto 0.18254 0.01472 lineto 0.22222 0.01472 lineto 0.2619 0.01472 lineto 0.30159 0.01472 lineto 0.34127 0.01472 lineto 0.38095 0.01472 lineto 0.42063 0.01472 lineto 0.46032 0.01472 lineto 0.5 0.01472 lineto 0.53968 0.01472 lineto 0.57937 0.01472 lineto 0.61905 0.01472 lineto 0.65873 0.01472 lineto 0.69841 0.01472 lineto 0.7381 0.01472 lineto 0.77778 0.01472 lineto 0.81746 0.01472 lineto 0.85714 0.01472 lineto 0.89683 0.01472 lineto 0.93651 0.01472 lineto 0.97619 0.01472 lineto stroke grestore grestore grestore gsave 0.004 setlinewidth 0.7381 0.01472 moveto 0.7381 0.60332 lineto 0.69048 0.42674 lineto 0.78571 0.42674 lineto 0.7381 0.60332 lineto stroke grestore grestore 0 0 moveto 1 0 lineto 1 0.61803 lineto 0 0.61803 lineto closepath clip newpath % End of Graphics MathPictureEnd :[font = output; output; inactive; preserveAspect; rightWrapOffset = 529; endGroup; endGroup; ] The Unformatted text for this cell was not generated. Use options in the Actions Settings dialog box to control when Unformatted text is generated. ;[o] -Graphics- :[font = subsubsection; inactive; Cclosed; preserveAspect; rightWrapOffset = 529; startGroup; ] Pulse Signal :[font = text; inactive; preserveAspect; rightWrapOffset = 529; ] CPulse[l,t] defines a pulse which begins at t=0 and ends at t = l. The CPulse has value 1 within the range (0,l), 0 outside this range, and 1/2 at the points t=0 and t=l. A continuous-pulse center at the origin is written as CPulse[l, t + l/2] or Shift[-l/2,t][CPulse[l, t]]. ;[s] 7:0,0;12,1;70,2;78,3;224,4;244,5;246,6;276,-1; 7:1,12,9,Times,1,14,0,0,0;1,13,10,Times,0,14,0,0,0;1,12,9,Times,1,14,0,0,0;1,13,10,Times,0,14,0,0,0;1,12,9,Times,1,14,0,0,0;1,13,10,Times,0,14,0,0,0;1,10,8,Times,1,12,0,0,0; :[font = input; Cclosed; preserveAspect; rightWrapOffset = 529; startGroup; ] SignalPlot[CPulse[1,t],{t,-1,2},PlotLabel->"Pulse Signal"] :[font = postscript; PostScript; formatAsPostScript; output; inactive; preserveAspect; rightWrapOffset = 529; pictureLeft = 17; pictureWidth = 389; pictureHeight = 239; ] %! %%Creator: Mathematica %%AspectRatio: 0.61803 MathPictureStart /Courier findfont 10 scalefont setfont % Scaling calculations 0.34127 0.31746 0.014715 0.588604 [ [(-1)] 0.02381 0.01472 0 2 Msboxa [(-0.5)] 0.18254 0.01472 0 2 Msboxa [(0.5)] 0.5 0.01472 0 2 Msboxa [(1)] 0.65873 0.01472 0 2 Msboxa [(1.5)] 0.81746 0.01472 0 2 Msboxa [(2)] 0.97619 0.01472 0 2 Msboxa [(t)] 1.025 0.01472 -1 0 Msboxa [(Pulse Signal)] 0.5 0.61803 0 -2 0 0 1 Mouter Mrotsboxa [(0.2)] 0.32877 0.13244 1 0 Msboxa [(0.4)] 0.32877 0.25016 1 0 Msboxa [(0.6)] 0.32877 0.36788 1 0 Msboxa [(0.8)] 0.32877 0.4856 1 0 Msboxa [(1)] 0.32877 0.60332 1 0 Msboxa [( )] 0.34127 0.61803 0 -4 Msboxa [ -0.001 -0.001 0 0 ] [ 1.001 0.61903 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath %%Object: Graphics [ ] 0 setdash 0 setgray gsave gsave 0.002 setlinewidth 0.02381 0.01472 moveto 0.02381 0.02097 lineto stroke grestore [(-1)] 0.02381 0.01472 0 2 Mshowa gsave 0.002 setlinewidth 0.18254 0.01472 moveto 0.18254 0.02097 lineto stroke grestore [(-0.5)] 0.18254 0.01472 0 2 Mshowa gsave 0.002 setlinewidth 0.5 0.01472 moveto 0.5 0.02097 lineto stroke grestore [(0.5)] 0.5 0.01472 0 2 Mshowa gsave 0.002 setlinewidth 0.65873 0.01472 moveto 0.65873 0.02097 lineto stroke grestore [(1)] 0.65873 0.01472 0 2 Mshowa gsave 0.002 setlinewidth 0.81746 0.01472 moveto 0.81746 0.02097 lineto stroke grestore [(1.5)] 0.81746 0.01472 0 2 Mshowa gsave 0.002 setlinewidth 0.97619 0.01472 moveto 0.97619 0.02097 lineto stroke grestore [(2)] 0.97619 0.01472 0 2 Mshowa gsave 0.001 setlinewidth 0.05556 0.01472 moveto 0.05556 0.01847 lineto stroke grestore gsave 0.001 setlinewidth 0.0873 0.01472 moveto 0.0873 0.01847 lineto stroke grestore gsave 0.001 setlinewidth 0.11905 0.01472 moveto 0.11905 0.01847 lineto stroke grestore gsave 0.001 setlinewidth 0.15079 0.01472 moveto 0.15079 0.01847 lineto stroke grestore gsave 0.001 setlinewidth 0.21429 0.01472 moveto 0.21429 0.01847 lineto stroke grestore gsave 0.001 setlinewidth 0.24603 0.01472 moveto 0.24603 0.01847 lineto stroke grestore gsave 0.001 setlinewidth 0.27778 0.01472 moveto 0.27778 0.01847 lineto stroke grestore gsave 0.001 setlinewidth 0.30952 0.01472 moveto 0.30952 0.01847 lineto stroke grestore gsave 0.001 setlinewidth 0.37302 0.01472 moveto 0.37302 0.01847 lineto stroke grestore gsave 0.001 setlinewidth 0.40476 0.01472 moveto 0.40476 0.01847 lineto stroke grestore gsave 0.001 setlinewidth 0.43651 0.01472 moveto 0.43651 0.01847 lineto stroke grestore gsave 0.001 setlinewidth 0.46825 0.01472 moveto 0.46825 0.01847 lineto stroke grestore gsave 0.001 setlinewidth 0.53175 0.01472 moveto 0.53175 0.01847 lineto stroke grestore gsave 0.001 setlinewidth 0.56349 0.01472 moveto 0.56349 0.01847 lineto stroke grestore gsave 0.001 setlinewidth 0.59524 0.01472 moveto 0.59524 0.01847 lineto stroke grestore gsave 0.001 setlinewidth 0.62698 0.01472 moveto 0.62698 0.01847 lineto stroke grestore gsave 0.001 setlinewidth 0.69048 0.01472 moveto 0.69048 0.01847 lineto stroke grestore gsave 0.001 setlinewidth 0.72222 0.01472 moveto 0.72222 0.01847 lineto stroke grestore gsave 0.001 setlinewidth 0.75397 0.01472 moveto 0.75397 0.01847 lineto stroke grestore gsave 0.001 setlinewidth 0.78571 0.01472 moveto 0.78571 0.01847 lineto stroke grestore gsave 0.001 setlinewidth 0.84921 0.01472 moveto 0.84921 0.01847 lineto stroke grestore gsave 0.001 setlinewidth 0.88095 0.01472 moveto 0.88095 0.01847 lineto stroke grestore gsave 0.001 setlinewidth 0.9127 0.01472 moveto 0.9127 0.01847 lineto stroke grestore gsave 0.001 setlinewidth 0.94444 0.01472 moveto 0.94444 0.01847 lineto stroke grestore [(t)] 1.025 0.01472 -1 0 Mshowa gsave 0.002 setlinewidth 0 0.01472 moveto 1 0.01472 lineto stroke grestore [(Pulse Signal)] 0.5 0.61803 0 -2 0 0 1 Mouter Mrotshowa gsave 0.002 setlinewidth 0.34127 0.13244 moveto 0.34752 0.13244 lineto stroke grestore [(0.2)] 0.32877 0.13244 1 0 Mshowa gsave 0.002 setlinewidth 0.34127 0.25016 moveto 0.34752 0.25016 lineto stroke grestore [(0.4)] 0.32877 0.25016 1 0 Mshowa gsave 0.002 setlinewidth 0.34127 0.36788 moveto 0.34752 0.36788 lineto stroke grestore [(0.6)] 0.32877 0.36788 1 0 Mshowa gsave 0.002 setlinewidth 0.34127 0.4856 moveto 0.34752 0.4856 lineto stroke grestore [(0.8)] 0.32877 0.4856 1 0 Mshowa gsave 0.002 setlinewidth 0.34127 0.60332 moveto 0.34752 0.60332 lineto stroke grestore [(1)] 0.32877 0.60332 1 0 Mshowa gsave 0.001 setlinewidth 0.34127 0.03826 moveto 0.34502 0.03826 lineto stroke grestore gsave 0.001 setlinewidth 0.34127 0.0618 moveto 0.34502 0.0618 lineto stroke grestore gsave 0.001 setlinewidth 0.34127 0.08535 moveto 0.34502 0.08535 lineto stroke grestore gsave 0.001 setlinewidth 0.34127 0.10889 moveto 0.34502 0.10889 lineto stroke grestore gsave 0.001 setlinewidth 0.34127 0.15598 moveto 0.34502 0.15598 lineto stroke grestore gsave 0.001 setlinewidth 0.34127 0.17952 moveto 0.34502 0.17952 lineto stroke grestore gsave 0.001 setlinewidth 0.34127 0.20307 moveto 0.34502 0.20307 lineto stroke grestore gsave 0.001 setlinewidth 0.34127 0.22661 moveto 0.34502 0.22661 lineto stroke grestore gsave 0.001 setlinewidth 0.34127 0.2737 moveto 0.34502 0.2737 lineto stroke grestore gsave 0.001 setlinewidth 0.34127 0.29724 moveto 0.34502 0.29724 lineto stroke grestore gsave 0.001 setlinewidth 0.34127 0.32079 moveto 0.34502 0.32079 lineto stroke grestore gsave 0.001 setlinewidth 0.34127 0.34433 moveto 0.34502 0.34433 lineto stroke grestore gsave 0.001 setlinewidth 0.34127 0.39142 moveto 0.34502 0.39142 lineto stroke grestore gsave 0.001 setlinewidth 0.34127 0.41497 moveto 0.34502 0.41497 lineto stroke grestore gsave 0.001 setlinewidth 0.34127 0.43851 moveto 0.34502 0.43851 lineto stroke grestore gsave 0.001 setlinewidth 0.34127 0.46205 moveto 0.34502 0.46205 lineto stroke grestore gsave 0.001 setlinewidth 0.34127 0.50914 moveto 0.34502 0.50914 lineto stroke grestore gsave 0.001 setlinewidth 0.34127 0.53269 moveto 0.34502 0.53269 lineto stroke grestore gsave 0.001 setlinewidth 0.34127 0.55623 moveto 0.34502 0.55623 lineto stroke grestore gsave 0.001 setlinewidth 0.34127 0.57977 moveto 0.34502 0.57977 lineto stroke grestore [( )] 0.34127 0.61803 0 -4 Mshowa gsave 0.002 setlinewidth 0.34127 0 moveto 0.34127 0.61803 lineto stroke grestore grestore gsave gsave gsave 0.006 setlinewidth 0.02381 0.01472 moveto 0.06349 0.01472 lineto 0.10317 0.01472 lineto 0.14286 0.01472 lineto 0.18254 0.01472 lineto 0.22222 0.01472 lineto 0.2619 0.01472 lineto 0.28175 0.01472 lineto 0.30159 0.01472 lineto 0.31151 0.01472 lineto 0.32143 0.01472 lineto 0.32639 0.01472 lineto 0.33135 0.01472 lineto 0.33383 0.01472 lineto 0.33631 0.01472 lineto 0.33755 0.01472 lineto 0.33879 0.01472 lineto 0.34127 0.30902 lineto 0.34251 0.60332 lineto 0.34375 0.60332 lineto 0.34623 0.60332 lineto 0.35119 0.60332 lineto 0.36111 0.60332 lineto 0.38095 0.60332 lineto 0.42063 0.60332 lineto 0.46032 0.60332 lineto 0.5 0.60332 lineto 0.53968 0.60332 lineto 0.57937 0.60332 lineto 0.59921 0.60332 lineto 0.61905 0.60332 lineto 0.62897 0.60332 lineto 0.63889 0.60332 lineto 0.64385 0.60332 lineto 0.64881 0.60332 lineto 0.65129 0.60332 lineto 0.65377 0.60332 lineto 0.65501 0.60332 lineto 0.65625 0.60332 lineto 0.65873 0.30902 lineto 0.65997 0.01472 lineto 0.66121 0.01472 lineto 0.66369 0.01472 lineto 0.66865 0.01472 lineto 0.67857 0.01472 lineto 0.69841 0.01472 lineto 0.7381 0.01472 lineto 0.77778 0.01472 lineto 0.81746 0.01472 lineto 0.85714 0.01472 lineto Mistroke 0.89683 0.01472 lineto 0.93651 0.01472 lineto 0.97619 0.01472 lineto Mfstroke grestore grestore gsave [ 0.05 0.05 ] 0 setdash gsave 0.004 setlinewidth 0.02381 0.01472 moveto 0.06349 0.01472 lineto 0.10317 0.01472 lineto 0.14286 0.01472 lineto 0.18254 0.01472 lineto 0.22222 0.01472 lineto 0.2619 0.01472 lineto 0.30159 0.01472 lineto 0.34127 0.01472 lineto 0.38095 0.01472 lineto 0.42063 0.01472 lineto 0.46032 0.01472 lineto 0.5 0.01472 lineto 0.53968 0.01472 lineto 0.57937 0.01472 lineto 0.61905 0.01472 lineto 0.65873 0.01472 lineto 0.69841 0.01472 lineto 0.7381 0.01472 lineto 0.77778 0.01472 lineto 0.81746 0.01472 lineto 0.85714 0.01472 lineto 0.89683 0.01472 lineto 0.93651 0.01472 lineto 0.97619 0.01472 lineto stroke grestore grestore grestore 0 0 moveto 1 0 lineto 1 0.61803 lineto 0 0.61803 lineto closepath clip newpath % End of Graphics MathPictureEnd :[font = output; output; inactive; preserveAspect; rightWrapOffset = 529; endGroup; ] The Unformatted text for this cell was not generated. Use options in the Actions Settings dialog box to control when Unformatted text is generated. ;[o] -Graphics- :[font = input; Cclosed; preserveAspect; rightWrapOffset = 529; startGroup; ] SignalPlot[CPulse[1,t+1/2],{t,-1,2},PlotLabel-> "Shifted Pulse Signal"] :[font = postscript; PostScript; formatAsPostScript; output; inactive; preserveAspect; rightWrapOffset = 529; pictureLeft = 17; pictureWidth = 389; pictureHeight = 239; ] %! %%Creator: Mathematica %%AspectRatio: 0.61803 MathPictureStart /Courier findfont 10 scalefont setfont % Scaling calculations 0.34127 0.31746 0.014715 0.588604 [ [(-1)] 0.02381 0.01472 0 2 Msboxa [(-0.5)] 0.18254 0.01472 0 2 Msboxa [(0.5)] 0.5 0.01472 0 2 Msboxa [(1)] 0.65873 0.01472 0 2 Msboxa [(1.5)] 0.81746 0.01472 0 2 Msboxa [(2)] 0.97619 0.01472 0 2 Msboxa [(t)] 1.025 0.01472 -1 0 Msboxa [(Shifted Pulse Signal)] 0.5 0.61803 0 -2 0 0 1 Mouter Mrotsboxa [(0.2)] 0.32877 0.13244 1 0 Msboxa [(0.4)] 0.32877 0.25016 1 0 Msboxa [(0.6)] 0.32877 0.36788 1 0 Msboxa [(0.8)] 0.32877 0.4856 1 0 Msboxa [(1)] 0.32877 0.60332 1 0 Msboxa [( )] 0.34127 0.61803 0 -4 Msboxa [ -0.001 -0.001 0 0 ] [ 1.001 0.61903 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath %%Object: Graphics [ ] 0 setdash 0 setgray gsave gsave 0.002 setlinewidth 0.02381 0.01472 moveto 0.02381 0.02097 lineto stroke grestore [(-1)] 0.02381 0.01472 0 2 Mshowa gsave 0.002 setlinewidth 0.18254 0.01472 moveto 0.18254 0.02097 lineto stroke grestore [(-0.5)] 0.18254 0.01472 0 2 Mshowa gsave 0.002 setlinewidth 0.5 0.01472 moveto 0.5 0.02097 lineto stroke grestore [(0.5)] 0.5 0.01472 0 2 Mshowa gsave 0.002 setlinewidth 0.65873 0.01472 moveto 0.65873 0.02097 lineto stroke grestore [(1)] 0.65873 0.01472 0 2 Mshowa gsave 0.002 setlinewidth 0.81746 0.01472 moveto 0.81746 0.02097 lineto stroke grestore [(1.5)] 0.81746 0.01472 0 2 Mshowa gsave 0.002 setlinewidth 0.97619 0.01472 moveto 0.97619 0.02097 lineto stroke grestore [(2)] 0.97619 0.01472 0 2 Mshowa gsave 0.001 setlinewidth 0.05556 0.01472 moveto 0.05556 0.01847 lineto stroke grestore gsave 0.001 setlinewidth 0.0873 0.01472 moveto 0.0873 0.01847 lineto stroke grestore gsave 0.001 setlinewidth 0.11905 0.01472 moveto 0.11905 0.01847 lineto stroke grestore gsave 0.001 setlinewidth 0.15079 0.01472 moveto 0.15079 0.01847 lineto stroke grestore gsave 0.001 setlinewidth 0.21429 0.01472 moveto 0.21429 0.01847 lineto stroke grestore gsave 0.001 setlinewidth 0.24603 0.01472 moveto 0.24603 0.01847 lineto stroke grestore gsave 0.001 setlinewidth 0.27778 0.01472 moveto 0.27778 0.01847 lineto stroke grestore gsave 0.001 setlinewidth 0.30952 0.01472 moveto 0.30952 0.01847 lineto stroke grestore gsave 0.001 setlinewidth 0.37302 0.01472 moveto 0.37302 0.01847 lineto stroke grestore gsave 0.001 setlinewidth 0.40476 0.01472 moveto 0.40476 0.01847 lineto stroke grestore gsave 0.001 setlinewidth 0.43651 0.01472 moveto 0.43651 0.01847 lineto stroke grestore gsave 0.001 setlinewidth 0.46825 0.01472 moveto 0.46825 0.01847 lineto stroke grestore gsave 0.001 setlinewidth 0.53175 0.01472 moveto 0.53175 0.01847 lineto stroke grestore gsave 0.001 setlinewidth 0.56349 0.01472 moveto 0.56349 0.01847 lineto stroke grestore gsave 0.001 setlinewidth 0.59524 0.01472 moveto 0.59524 0.01847 lineto stroke grestore gsave 0.001 setlinewidth 0.62698 0.01472 moveto 0.62698 0.01847 lineto stroke grestore gsave 0.001 setlinewidth 0.69048 0.01472 moveto 0.69048 0.01847 lineto stroke grestore gsave 0.001 setlinewidth 0.72222 0.01472 moveto 0.72222 0.01847 lineto stroke grestore gsave 0.001 setlinewidth 0.75397 0.01472 moveto 0.75397 0.01847 lineto stroke grestore gsave 0.001 setlinewidth 0.78571 0.01472 moveto 0.78571 0.01847 lineto stroke grestore gsave 0.001 setlinewidth 0.84921 0.01472 moveto 0.84921 0.01847 lineto stroke grestore gsave 0.001 setlinewidth 0.88095 0.01472 moveto 0.88095 0.01847 lineto stroke grestore gsave 0.001 setlinewidth 0.9127 0.01472 moveto 0.9127 0.01847 lineto stroke grestore gsave 0.001 setlinewidth 0.94444 0.01472 moveto 0.94444 0.01847 lineto stroke grestore [(t)] 1.025 0.01472 -1 0 Mshowa gsave 0.002 setlinewidth 0 0.01472 moveto 1 0.01472 lineto stroke grestore [(Shifted Pulse Signal)] 0.5 0.61803 0 -2 0 0 1 Mouter Mrotshowa gsave 0.002 setlinewidth 0.34127 0.13244 moveto 0.34752 0.13244 lineto stroke grestore [(0.2)] 0.32877 0.13244 1 0 Mshowa gsave 0.002 setlinewidth 0.34127 0.25016 moveto 0.34752 0.25016 lineto stroke grestore [(0.4)] 0.32877 0.25016 1 0 Mshowa gsave 0.002 setlinewidth 0.34127 0.36788 moveto 0.34752 0.36788 lineto stroke grestore [(0.6)] 0.32877 0.36788 1 0 Mshowa gsave 0.002 setlinewidth 0.34127 0.4856 moveto 0.34752 0.4856 lineto stroke grestore [(0.8)] 0.32877 0.4856 1 0 Mshowa gsave 0.002 setlinewidth 0.34127 0.60332 moveto 0.34752 0.60332 lineto stroke grestore [(1)] 0.32877 0.60332 1 0 Mshowa gsave 0.001 setlinewidth 0.34127 0.03826 moveto 0.34502 0.03826 lineto stroke grestore gsave 0.001 setlinewidth 0.34127 0.0618 moveto 0.34502 0.0618 lineto stroke grestore gsave 0.001 setlinewidth 0.34127 0.08535 moveto 0.34502 0.08535 lineto stroke grestore gsave 0.001 setlinewidth 0.34127 0.10889 moveto 0.34502 0.10889 lineto stroke grestore gsave 0.001 setlinewidth 0.34127 0.15598 moveto 0.34502 0.15598 lineto stroke grestore gsave 0.001 setlinewidth 0.34127 0.17952 moveto 0.34502 0.17952 lineto stroke grestore gsave 0.001 setlinewidth 0.34127 0.20307 moveto 0.34502 0.20307 lineto stroke grestore gsave 0.001 setlinewidth 0.34127 0.22661 moveto 0.34502 0.22661 lineto stroke grestore gsave 0.001 setlinewidth 0.34127 0.2737 moveto 0.34502 0.2737 lineto stroke grestore gsave 0.001 setlinewidth 0.34127 0.29724 moveto 0.34502 0.29724 lineto stroke grestore gsave 0.001 setlinewidth 0.34127 0.32079 moveto 0.34502 0.32079 lineto stroke grestore gsave 0.001 setlinewidth 0.34127 0.34433 moveto 0.34502 0.34433 lineto stroke grestore gsave 0.001 setlinewidth 0.34127 0.39142 moveto 0.34502 0.39142 lineto stroke grestore gsave 0.001 setlinewidth 0.34127 0.41497 moveto 0.34502 0.41497 lineto stroke grestore gsave 0.001 setlinewidth 0.34127 0.43851 moveto 0.34502 0.43851 lineto stroke grestore gsave 0.001 setlinewidth 0.34127 0.46205 moveto 0.34502 0.46205 lineto stroke grestore gsave 0.001 setlinewidth 0.34127 0.50914 moveto 0.34502 0.50914 lineto stroke grestore gsave 0.001 setlinewidth 0.34127 0.53269 moveto 0.34502 0.53269 lineto stroke grestore gsave 0.001 setlinewidth 0.34127 0.55623 moveto 0.34502 0.55623 lineto stroke grestore gsave 0.001 setlinewidth 0.34127 0.57977 moveto 0.34502 0.57977 lineto stroke grestore [( )] 0.34127 0.61803 0 -4 Mshowa gsave 0.002 setlinewidth 0.34127 0 moveto 0.34127 0.61803 lineto stroke grestore grestore gsave gsave gsave 0.006 setlinewidth 0.02381 0.01472 moveto 0.06349 0.01472 lineto 0.10317 0.01472 lineto 0.12302 0.01472 lineto 0.14286 0.01472 lineto 0.15278 0.01472 lineto 0.1627 0.01472 lineto 0.16766 0.01472 lineto 0.17262 0.01472 lineto 0.1751 0.01472 lineto 0.17758 0.01472 lineto 0.17882 0.01472 lineto 0.18006 0.01472 lineto 0.18254 0.30902 lineto 0.18378 0.60332 lineto 0.18502 0.60332 lineto 0.1875 0.60332 lineto 0.19246 0.60332 lineto 0.20238 0.60332 lineto 0.22222 0.60332 lineto 0.2619 0.60332 lineto 0.30159 0.60332 lineto 0.34127 0.60332 lineto 0.38095 0.60332 lineto 0.42063 0.60332 lineto 0.44048 0.60332 lineto 0.46032 0.60332 lineto 0.47024 0.60332 lineto 0.48016 0.60332 lineto 0.48512 0.60332 lineto 0.49008 0.60332 lineto 0.49256 0.60332 lineto 0.49504 0.60332 lineto 0.49628 0.60332 lineto 0.49752 0.60332 lineto 0.5 0.30902 lineto 0.50124 0.01472 lineto 0.50248 0.01472 lineto 0.50496 0.01472 lineto 0.50992 0.01472 lineto 0.51984 0.01472 lineto 0.53968 0.01472 lineto 0.57937 0.01472 lineto 0.61905 0.01472 lineto 0.65873 0.01472 lineto 0.69841 0.01472 lineto 0.7381 0.01472 lineto 0.77778 0.01472 lineto 0.81746 0.01472 lineto 0.85714 0.01472 lineto Mistroke 0.89683 0.01472 lineto 0.93651 0.01472 lineto 0.97619 0.01472 lineto Mfstroke grestore grestore gsave [ 0.05 0.05 ] 0 setdash gsave 0.004 setlinewidth 0.02381 0.01472 moveto 0.06349 0.01472 lineto 0.10317 0.01472 lineto 0.14286 0.01472 lineto 0.18254 0.01472 lineto 0.22222 0.01472 lineto 0.2619 0.01472 lineto 0.30159 0.01472 lineto 0.34127 0.01472 lineto 0.38095 0.01472 lineto 0.42063 0.01472 lineto 0.46032 0.01472 lineto 0.5 0.01472 lineto 0.53968 0.01472 lineto 0.57937 0.01472 lineto 0.61905 0.01472 lineto 0.65873 0.01472 lineto 0.69841 0.01472 lineto 0.7381 0.01472 lineto 0.77778 0.01472 lineto 0.81746 0.01472 lineto 0.85714 0.01472 lineto 0.89683 0.01472 lineto 0.93651 0.01472 lineto 0.97619 0.01472 lineto stroke grestore grestore grestore 0 0 moveto 1 0 lineto 1 0.61803 lineto 0 0.61803 lineto closepath clip newpath % End of Graphics MathPictureEnd :[font = output; output; inactive; preserveAspect; rightWrapOffset = 529; endGroup; endGroup; ] The Unformatted text for this cell was not generated. Use options in the Actions Settings dialog box to control when Unformatted text is generated. ;[o] -Graphics- :[font = subsubsection; inactive; Cclosed; preserveAspect; rightWrapOffset = 529; startGroup; ] Step Signal :[font = info; inactive; preserveAspect; rightWrapOffset = 529; ] CStep[t], a.k.a. Unit[-1][t], is the unit step function which is 1 for t > 0, 0 for t < 0, and 1/2 at t = 0. It is commonly used for continuous expressions t. See also Step and Unit. :[font = input; Cclosed; preserveAspect; rightWrapOffset = 529; startGroup; ] SignalPlot[CStep[t],{t,-1,3},PlotLabel->"Step Signal"] :[font = postscript; PostScript; formatAsPostScript; output; inactive; preserveAspect; rightWrapOffset = 529; pictureLeft = 17; pictureWidth = 389; pictureHeight = 239; ] %! %%Creator: Mathematica %%AspectRatio: 0.61803 MathPictureStart /Courier findfont 10 scalefont setfont % Scaling calculations 0.261905 0.238095 0.014715 0.588604 [ [(-1)] 0.02381 0.01472 0 2 Msboxa [(1)] 0.5 0.01472 0 2 Msboxa [(2)] 0.7381 0.01472 0 2 Msboxa [(3)] 0.97619 0.01472 0 2 Msboxa [(t)] 1.025 0.01472 -1 0 Msboxa [(Step Signal)] 0.5 0.61803 0 -2 0 0 1 Mouter Mrotsboxa [(0.2)] 0.2494 0.13244 1 0 Msboxa [(0.4)] 0.2494 0.25016 1 0 Msboxa [(0.6)] 0.2494 0.36788 1 0 Msboxa [(0.8)] 0.2494 0.4856 1 0 Msboxa [(1)] 0.2494 0.60332 1 0 Msboxa [( )] 0.2619 0.61803 0 -4 Msboxa [ -0.001 -0.001 0 0 ] [ 1.001 0.61903 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath %%Object: Graphics [ ] 0 setdash 0 setgray gsave gsave 0.002 setlinewidth 0.02381 0.01472 moveto 0.02381 0.02097 lineto stroke grestore [(-1)] 0.02381 0.01472 0 2 Mshowa gsave 0.002 setlinewidth 0.5 0.01472 moveto 0.5 0.02097 lineto stroke grestore [(1)] 0.5 0.01472 0 2 Mshowa gsave 0.002 setlinewidth 0.7381 0.01472 moveto 0.7381 0.02097 lineto stroke grestore [(2)] 0.7381 0.01472 0 2 Mshowa gsave 0.002 setlinewidth 0.97619 0.01472 moveto 0.97619 0.02097 lineto stroke grestore [(3)] 0.97619 0.01472 0 2 Mshowa gsave 0.001 setlinewidth 0.07143 0.01472 moveto 0.07143 0.01847 lineto stroke grestore gsave 0.001 setlinewidth 0.11905 0.01472 moveto 0.11905 0.01847 lineto stroke grestore gsave 0.001 setlinewidth 0.16667 0.01472 moveto 0.16667 0.01847 lineto stroke grestore gsave 0.001 setlinewidth 0.21429 0.01472 moveto 0.21429 0.01847 lineto stroke grestore gsave 0.001 setlinewidth 0.30952 0.01472 moveto 0.30952 0.01847 lineto stroke grestore gsave 0.001 setlinewidth 0.35714 0.01472 moveto 0.35714 0.01847 lineto stroke grestore gsave 0.001 setlinewidth 0.40476 0.01472 moveto 0.40476 0.01847 lineto stroke grestore gsave 0.001 setlinewidth 0.45238 0.01472 moveto 0.45238 0.01847 lineto stroke grestore gsave 0.001 setlinewidth 0.54762 0.01472 moveto 0.54762 0.01847 lineto stroke grestore gsave 0.001 setlinewidth 0.59524 0.01472 moveto 0.59524 0.01847 lineto stroke grestore gsave 0.001 setlinewidth 0.64286 0.01472 moveto 0.64286 0.01847 lineto stroke grestore gsave 0.001 setlinewidth 0.69048 0.01472 moveto 0.69048 0.01847 lineto stroke grestore gsave 0.001 setlinewidth 0.78571 0.01472 moveto 0.78571 0.01847 lineto stroke grestore gsave 0.001 setlinewidth 0.83333 0.01472 moveto 0.83333 0.01847 lineto stroke grestore gsave 0.001 setlinewidth 0.88095 0.01472 moveto 0.88095 0.01847 lineto stroke grestore gsave 0.001 setlinewidth 0.92857 0.01472 moveto 0.92857 0.01847 lineto stroke grestore [(t)] 1.025 0.01472 -1 0 Mshowa gsave 0.002 setlinewidth 0 0.01472 moveto 1 0.01472 lineto stroke grestore [(Step Signal)] 0.5 0.61803 0 -2 0 0 1 Mouter Mrotshowa gsave 0.002 setlinewidth 0.2619 0.13244 moveto 0.26815 0.13244 lineto stroke grestore [(0.2)] 0.2494 0.13244 1 0 Mshowa gsave 0.002 setlinewidth 0.2619 0.25016 moveto 0.26815 0.25016 lineto stroke grestore [(0.4)] 0.2494 0.25016 1 0 Mshowa gsave 0.002 setlinewidth 0.2619 0.36788 moveto 0.26815 0.36788 lineto stroke grestore [(0.6)] 0.2494 0.36788 1 0 Mshowa gsave 0.002 setlinewidth 0.2619 0.4856 moveto 0.26815 0.4856 lineto stroke grestore [(0.8)] 0.2494 0.4856 1 0 Mshowa gsave 0.002 setlinewidth 0.2619 0.60332 moveto 0.26815 0.60332 lineto stroke grestore [(1)] 0.2494 0.60332 1 0 Mshowa gsave 0.001 setlinewidth 0.2619 0.03826 moveto 0.26565 0.03826 lineto stroke grestore gsave 0.001 setlinewidth 0.2619 0.0618 moveto 0.26565 0.0618 lineto stroke grestore gsave 0.001 setlinewidth 0.2619 0.08535 moveto 0.26565 0.08535 lineto stroke grestore gsave 0.001 setlinewidth 0.2619 0.10889 moveto 0.26565 0.10889 lineto stroke grestore gsave 0.001 setlinewidth 0.2619 0.15598 moveto 0.26565 0.15598 lineto stroke grestore gsave 0.001 setlinewidth 0.2619 0.17952 moveto 0.26565 0.17952 lineto stroke grestore gsave 0.001 setlinewidth 0.2619 0.20307 moveto 0.26565 0.20307 lineto stroke grestore gsave 0.001 setlinewidth 0.2619 0.22661 moveto 0.26565 0.22661 lineto stroke grestore gsave 0.001 setlinewidth 0.2619 0.2737 moveto 0.26565 0.2737 lineto stroke grestore gsave 0.001 setlinewidth 0.2619 0.29724 moveto 0.26565 0.29724 lineto stroke grestore gsave 0.001 setlinewidth 0.2619 0.32079 moveto 0.26565 0.32079 lineto stroke grestore gsave 0.001 setlinewidth 0.2619 0.34433 moveto 0.26565 0.34433 lineto stroke grestore gsave 0.001 setlinewidth 0.2619 0.39142 moveto 0.26565 0.39142 lineto stroke grestore gsave 0.001 setlinewidth 0.2619 0.41497 moveto 0.26565 0.41497 lineto stroke grestore gsave 0.001 setlinewidth 0.2619 0.43851 moveto 0.26565 0.43851 lineto stroke grestore gsave 0.001 setlinewidth 0.2619 0.46205 moveto 0.26565 0.46205 lineto stroke grestore gsave 0.001 setlinewidth 0.2619 0.50914 moveto 0.26565 0.50914 lineto stroke grestore gsave 0.001 setlinewidth 0.2619 0.53269 moveto 0.26565 0.53269 lineto stroke grestore gsave 0.001 setlinewidth 0.2619 0.55623 moveto 0.26565 0.55623 lineto stroke grestore gsave 0.001 setlinewidth 0.2619 0.57977 moveto 0.26565 0.57977 lineto stroke grestore [( )] 0.2619 0.61803 0 -4 Mshowa gsave 0.002 setlinewidth 0.2619 0 moveto 0.2619 0.61803 lineto stroke grestore grestore gsave gsave gsave 0.006 setlinewidth 0.02381 0.01472 moveto 0.06349 0.01472 lineto 0.10317 0.01472 lineto 0.14286 0.01472 lineto 0.18254 0.01472 lineto 0.22222 0.01472 lineto 0.24206 0.01472 lineto 0.25198 0.01472 lineto 0.25694 0.01472 lineto 0.25942 0.01472 lineto 0.26066 0.01472 lineto 0.2619 0.01472 lineto 0.26314 0.60332 lineto 0.26438 0.60332 lineto 0.26687 0.60332 lineto 0.27183 0.60332 lineto 0.28175 0.60332 lineto 0.30159 0.60332 lineto 0.34127 0.60332 lineto 0.38095 0.60332 lineto 0.42063 0.60332 lineto 0.46032 0.60332 lineto 0.5 0.60332 lineto 0.53968 0.60332 lineto 0.57937 0.60332 lineto 0.61905 0.60332 lineto 0.65873 0.60332 lineto 0.69841 0.60332 lineto 0.7381 0.60332 lineto 0.77778 0.60332 lineto 0.81746 0.60332 lineto 0.85714 0.60332 lineto 0.89683 0.60332 lineto 0.93651 0.60332 lineto 0.97619 0.60332 lineto stroke grestore grestore gsave [ 0.05 0.05 ] 0 setdash gsave 0.004 setlinewidth 0.02381 0.01472 moveto 0.06349 0.01472 lineto 0.10317 0.01472 lineto 0.14286 0.01472 lineto 0.18254 0.01472 lineto 0.22222 0.01472 lineto 0.2619 0.01472 lineto 0.30159 0.01472 lineto 0.34127 0.01472 lineto 0.38095 0.01472 lineto 0.42063 0.01472 lineto 0.46032 0.01472 lineto 0.5 0.01472 lineto 0.53968 0.01472 lineto 0.57937 0.01472 lineto 0.61905 0.01472 lineto 0.65873 0.01472 lineto 0.69841 0.01472 lineto 0.7381 0.01472 lineto 0.77778 0.01472 lineto 0.81746 0.01472 lineto 0.85714 0.01472 lineto 0.89683 0.01472 lineto 0.93651 0.01472 lineto 0.97619 0.01472 lineto stroke grestore grestore grestore 0 0 moveto 1 0 lineto 1 0.61803 lineto 0 0.61803 lineto closepath clip newpath % End of Graphics MathPictureEnd :[font = output; output; inactive; preserveAspect; rightWrapOffset = 529; endGroup; endGroup; ] The Unformatted text for this cell was not generated. Use options in the Actions Settings dialog box to control when Unformatted text is generated. ;[o] -Graphics- :[font = subsubsection; inactive; Cclosed; preserveAspect; rightWrapOffset = 529; startGroup; ] Ramp Signal :[font = input; Cclosed; preserveAspect; rightWrapOffset = 529; startGroup; ] SignalPlot[t CStep[t],{t,-1,3},PlotLabel->"Ramp Signal"] :[font = postscript; PostScript; formatAsPostScript; output; inactive; preserveAspect; rightWrapOffset = 529; pictureLeft = 17; pictureWidth = 389; pictureHeight = 239; ] %! %%Creator: Mathematica %%AspectRatio: 0.61803 MathPictureStart /Courier findfont 10 scalefont setfont % Scaling calculations 0.261905 0.238095 0.014715 0.196201 [ [(-1)] 0.02381 0.01472 0 2 Msboxa [(1)] 0.5 0.01472 0 2 Msboxa [(2)] 0.7381 0.01472 0 2 Msboxa [(3)] 0.97619 0.01472 0 2 Msboxa [(t)] 1.025 0.01472 -1 0 Msboxa [(Ramp Signal)] 0.5 0.61803 0 -2 0 0 1 Mouter Mrotsboxa [(0.5)] 0.2494 0.11282 1 0 Msboxa [(1)] 0.2494 0.21092 1 0 Msboxa [(1.5)] 0.2494 0.30902 1 0 Msboxa [(2)] 0.2494 0.40712 1 0 Msboxa [(2.5)] 0.2494 0.50522 1 0 Msboxa [(3)] 0.2494 0.60332 1 0 Msboxa [( )] 0.2619 0.61803 0 -4 Msboxa [ -0.001 -0.001 0 0 ] [ 1.001 0.61903 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath %%Object: Graphics [ ] 0 setdash 0 setgray gsave gsave 0.002 setlinewidth 0.02381 0.01472 moveto 0.02381 0.02097 lineto stroke grestore [(-1)] 0.02381 0.01472 0 2 Mshowa gsave 0.002 setlinewidth 0.5 0.01472 moveto 0.5 0.02097 lineto stroke grestore [(1)] 0.5 0.01472 0 2 Mshowa gsave 0.002 setlinewidth 0.7381 0.01472 moveto 0.7381 0.02097 lineto stroke grestore [(2)] 0.7381 0.01472 0 2 Mshowa gsave 0.002 setlinewidth 0.97619 0.01472 moveto 0.97619 0.02097 lineto stroke grestore [(3)] 0.97619 0.01472 0 2 Mshowa gsave 0.001 setlinewidth 0.07143 0.01472 moveto 0.07143 0.01847 lineto stroke grestore gsave 0.001 setlinewidth 0.11905 0.01472 moveto 0.11905 0.01847 lineto stroke grestore gsave 0.001 setlinewidth 0.16667 0.01472 moveto 0.16667 0.01847 lineto stroke grestore gsave 0.001 setlinewidth 0.21429 0.01472 moveto 0.21429 0.01847 lineto stroke grestore gsave 0.001 setlinewidth 0.30952 0.01472 moveto 0.30952 0.01847 lineto stroke grestore gsave 0.001 setlinewidth 0.35714 0.01472 moveto 0.35714 0.01847 lineto stroke grestore gsave 0.001 setlinewidth 0.40476 0.01472 moveto 0.40476 0.01847 lineto stroke grestore gsave 0.001 setlinewidth 0.45238 0.01472 moveto 0.45238 0.01847 lineto stroke grestore gsave 0.001 setlinewidth 0.54762 0.01472 moveto 0.54762 0.01847 lineto stroke grestore gsave 0.001 setlinewidth 0.59524 0.01472 moveto 0.59524 0.01847 lineto stroke grestore gsave 0.001 setlinewidth 0.64286 0.01472 moveto 0.64286 0.01847 lineto stroke grestore gsave 0.001 setlinewidth 0.69048 0.01472 moveto 0.69048 0.01847 lineto stroke grestore gsave 0.001 setlinewidth 0.78571 0.01472 moveto 0.78571 0.01847 lineto stroke grestore gsave 0.001 setlinewidth 0.83333 0.01472 moveto 0.83333 0.01847 lineto stroke grestore gsave 0.001 setlinewidth 0.88095 0.01472 moveto 0.88095 0.01847 lineto stroke grestore gsave 0.001 setlinewidth 0.92857 0.01472 moveto 0.92857 0.01847 lineto stroke grestore [(t)] 1.025 0.01472 -1 0 Mshowa gsave 0.002 setlinewidth 0 0.01472 moveto 1 0.01472 lineto stroke grestore [(Ramp Signal)] 0.5 0.61803 0 -2 0 0 1 Mouter Mrotshowa gsave 0.002 setlinewidth 0.2619 0.11282 moveto 0.26815 0.11282 lineto stroke grestore [(0.5)] 0.2494 0.11282 1 0 Mshowa gsave 0.002 setlinewidth 0.2619 0.21092 moveto 0.26815 0.21092 lineto stroke grestore [(1)] 0.2494 0.21092 1 0 Mshowa gsave 0.002 setlinewidth 0.2619 0.30902 moveto 0.26815 0.30902 lineto stroke grestore [(1.5)] 0.2494 0.30902 1 0 Mshowa gsave 0.002 setlinewidth 0.2619 0.40712 moveto 0.26815 0.40712 lineto stroke grestore [(2)] 0.2494 0.40712 1 0 Mshowa gsave 0.002 setlinewidth 0.2619 0.50522 moveto 0.26815 0.50522 lineto stroke grestore [(2.5)] 0.2494 0.50522 1 0 Mshowa gsave 0.002 setlinewidth 0.2619 0.60332 moveto 0.26815 0.60332 lineto stroke grestore [(3)] 0.2494 0.60332 1 0 Mshowa gsave 0.001 setlinewidth 0.2619 0.03434 moveto 0.26565 0.03434 lineto stroke grestore gsave 0.001 setlinewidth 0.2619 0.05396 moveto 0.26565 0.05396 lineto stroke grestore gsave 0.001 setlinewidth 0.2619 0.07358 moveto 0.26565 0.07358 lineto stroke grestore gsave 0.001 setlinewidth 0.2619 0.0932 moveto 0.26565 0.0932 lineto stroke grestore gsave 0.001 setlinewidth 0.2619 0.13244 moveto 0.26565 0.13244 lineto stroke grestore gsave 0.001 setlinewidth 0.2619 0.15206 moveto 0.26565 0.15206 lineto stroke grestore gsave 0.001 setlinewidth 0.2619 0.17168 moveto 0.26565 0.17168 lineto stroke grestore gsave 0.001 setlinewidth 0.2619 0.1913 moveto 0.26565 0.1913 lineto stroke grestore gsave 0.001 setlinewidth 0.2619 0.23054 moveto 0.26565 0.23054 lineto stroke grestore gsave 0.001 setlinewidth 0.2619 0.25016 moveto 0.26565 0.25016 lineto stroke grestore gsave 0.001 setlinewidth 0.2619 0.26978 moveto 0.26565 0.26978 lineto stroke grestore gsave 0.001 setlinewidth 0.2619 0.2894 moveto 0.26565 0.2894 lineto stroke grestore gsave 0.001 setlinewidth 0.2619 0.32864 moveto 0.26565 0.32864 lineto stroke grestore gsave 0.001 setlinewidth 0.2619 0.34826 moveto 0.26565 0.34826 lineto stroke grestore gsave 0.001 setlinewidth 0.2619 0.36788 moveto 0.26565 0.36788 lineto stroke grestore gsave 0.001 setlinewidth 0.2619 0.3875 moveto 0.26565 0.3875 lineto stroke grestore gsave 0.001 setlinewidth 0.2619 0.42674 moveto 0.26565 0.42674 lineto stroke grestore gsave 0.001 setlinewidth 0.2619 0.44636 moveto 0.26565 0.44636 lineto stroke grestore gsave 0.001 setlinewidth 0.2619 0.46598 moveto 0.26565 0.46598 lineto stroke grestore gsave 0.001 setlinewidth 0.2619 0.4856 moveto 0.26565 0.4856 lineto stroke grestore gsave 0.001 setlinewidth 0.2619 0.52484 moveto 0.26565 0.52484 lineto stroke grestore gsave 0.001 setlinewidth 0.2619 0.54446 moveto 0.26565 0.54446 lineto stroke grestore gsave 0.001 setlinewidth 0.2619 0.56408 moveto 0.26565 0.56408 lineto stroke grestore gsave 0.001 setlinewidth 0.2619 0.5837 moveto 0.26565 0.5837 lineto stroke grestore [( )] 0.2619 0.61803 0 -4 Mshowa gsave 0.002 setlinewidth 0.2619 0 moveto 0.2619 0.61803 lineto stroke grestore grestore gsave gsave gsave 0.006 setlinewidth 0.02381 0.01472 moveto 0.06349 0.01472 lineto 0.10317 0.01472 lineto 0.14286 0.01472 lineto 0.18254 0.01472 lineto 0.22222 0.01472 lineto 0.24206 0.01472 lineto 0.25198 0.01472 lineto 0.25694 0.01472 lineto 0.25942 0.01472 lineto 0.26066 0.01472 lineto 0.2619 0.01472 lineto 0.26438 0.01676 lineto 0.26687 0.0188 lineto 0.27183 0.02289 lineto 0.28175 0.03107 lineto 0.30159 0.04742 lineto 0.34127 0.08012 lineto 0.38095 0.11282 lineto 0.42063 0.14552 lineto 0.46032 0.17822 lineto 0.5 0.21092 lineto 0.53968 0.24362 lineto 0.57937 0.27632 lineto 0.61905 0.30902 lineto 0.65873 0.34172 lineto 0.69841 0.37442 lineto 0.7381 0.40712 lineto 0.77778 0.43982 lineto 0.81746 0.47252 lineto 0.85714 0.50522 lineto 0.89683 0.53792 lineto 0.93651 0.57062 lineto 0.97619 0.60332 lineto stroke grestore grestore gsave [ 0.05 0.05 ] 0 setdash gsave 0.004 setlinewidth 0.02381 0.01472 moveto 0.06349 0.01472 lineto 0.10317 0.01472 lineto 0.14286 0.01472 lineto 0.18254 0.01472 lineto 0.22222 0.01472 lineto 0.2619 0.01472 lineto 0.30159 0.01472 lineto 0.34127 0.01472 lineto 0.38095 0.01472 lineto 0.42063 0.01472 lineto 0.46032 0.01472 lineto 0.5 0.01472 lineto 0.53968 0.01472 lineto 0.57937 0.01472 lineto 0.61905 0.01472 lineto 0.65873 0.01472 lineto 0.69841 0.01472 lineto 0.7381 0.01472 lineto 0.77778 0.01472 lineto 0.81746 0.01472 lineto 0.85714 0.01472 lineto 0.89683 0.01472 lineto 0.93651 0.01472 lineto 0.97619 0.01472 lineto stroke grestore grestore grestore 0 0 moveto 1 0 lineto 1 0.61803 lineto 0 0.61803 lineto closepath clip newpath % End of Graphics MathPictureEnd :[font = output; output; inactive; preserveAspect; rightWrapOffset = 529; endGroup; endGroup; endGroup; ] The Unformatted text for this cell was not generated. Use options in the Actions Settings dialog box to control when Unformatted text is generated. ;[o] -Graphics- :[font = section; inactive; Cclosed; preserveAspect; startGroup; ] Forward Laplace Transforms :[font = text; inactive; Cclosed; preserveAspect; startGroup; ] The forward Laplace transform rule base transforms a two-sided continuous-time function to the Laplace domain. In these packages, the Laplace transform of the continuous-time function f(t) is F(s) = L{f(t)} such that ;[s] 14:0,0;2,1;6,2;31,3;55,4;89,5;97,6;111,7;137,8;154,9;187,10;192,11;194,12;209,13;220,-1; 14:1,12,9,Times,1,14,0,0,0;1,13,10,Times,0,14,0,0,0;1,12,9,Times,1,14,0,0,0;1,13,10,Times,0,14,0,0,0;1,12,9,Times,1,14,0,0,0;1,13,10,Times,0,14,0,0,0;1,12,9,Times,1,14,0,0,0;1,13,10,Times,0,14,0,0,0;1,12,9,Times,1,14,0,0,0;1,13,10,Times,0,14,0,0,0;1,12,9,Times,1,14,0,0,0;1,13,10,Times,0,14,0,0,0;1,12,9,Times,1,14,0,0,0;1,11,8,Times,0,12,0,0,0; :[font = postscript; PostScript; formatAsPostScript; output; active; preserveAspect; height = 94; pictureLeft = 10; pictureWidth = 399; pictureHeight = 245; ] %! %%Creator: Mathematica %%AspectRatio: 1 MathPictureStart /Courier findfont 10 scalefont setfont % Scaling calculations 0.541667 0.0833333 0.833333 0.0833333 [ [ 0 0 0 0 ] [ 1 1 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath %%Object: Graphics [ ] 0 setdash 0 setgray gsave grestore 0 0 moveto 1 0 lineto 1 1 lineto 0 1 lineto closepath clip newpath gsave 0.0075 setlinewidth 0.375 0.925 moveto 0.3625 0.91667 lineto 0.35417 0.9 lineto 0.35417 0.76667 lineto 0.34583 0.75 lineto 0.33333 0.74167 lineto stroke gsave /Plain findfont 14 scalefont setfont [(L{f\(t\)} =)] 0.29167 0.83333 1 0 Mshowa grestore gsave /Plain findfont 12 scalefont setfont [(o)] 0.41667 0.925 0 0 Mshowa grestore gsave /Plain findfont 12 scalefont setfont [(o)] 0.43333 0.925 0 0 Mshowa grestore gsave /Plain findfont 12 scalefont setfont [(o)] 0.40833 0.74167 0 0 Mshowa grestore gsave /Plain findfont 12 scalefont setfont [(o)] 0.425 0.74167 0 0 Mshowa grestore gsave /Plain findfont 12 scalefont setfont [(-)] 0.375 0.74167 0 0 Mshowa grestore gsave /Plain findfont 14 scalefont setfont [(f\(t\))] 0.45833 0.83333 -1 0 Mshowa grestore gsave /Plain findfont 14 scalefont setfont [(e)] 0.58333 0.83333 -1 0 Mshowa grestore gsave /Plain findfont 14 scalefont setfont [(dt)] 0.70833 0.83333 -1 0 Mshowa grestore gsave /Plain findfont 10 scalefont setfont [(-st)] 0.625 0.875 -1 0 Mshowa grestore gsave /Plain findfont 14 scalefont setfont [(\(1\))] 0.875 0.83333 -1 0 Mshowa grestore grestore % End of Graphics MathPictureEnd :[font = text; inactive; preserveAspect; endGroup; ] In order that a transform's inverse can be specified uniquely, LaPlace tracks the region of convergence of the transform. ;[s] 3:0,0;62,1;71,2;121,-1; 3:1,14,11,Times,0,16,0,0,0;1,14,11,Times,1,16,0,0,0;1,13,10,Times,0,14,0,0,0; :[font = subsection; inactive; Cclosed; preserveAspect; startGroup; ] Invoking the Forward Laplace Transform Rule Base :[font = text; inactive; preserveAspect; ] To invoke LaPlace, a user must specify the function and the time variable(s) to the rule base. For example, the two-sided Laplace transform of f(t) = 1 is Delta[s]: ;[s] 9:0,0;2,1;11,2;20,3;124,4;143,5;145,6;155,7;157,8;168,-1; 9:1,12,9,Times,1,14,0,0,0;1,13,10,Times,0,14,0,0,0;1,12,9,Times,1,14,0,0,0;1,13,10,Times,0,14,0,0,0;1,12,9,Times,1,14,0,0,0;1,13,10,Times,0,14,0,0,0;1,12,9,Times,1,14,0,0,0;1,13,10,Times,0,14,0,0,0;1,10,8,Times,1,12,0,0,0; :[font = input; Cclosed; preserveAspect; startGroup; ] LaPlace[ 1, t ] :[font = output; output; inactive; preserveAspect; endGroup; ] LTransData[Delta[s], Rminus[0], Rplus[0], LVariables[s]] ;[o] LTransData[Delta[s], Rminus[0], Rplus[0], LVariables[s]] :[font = text; inactive; preserveAspect; ] Notice that the Laplace transform rule base returns an object with a head of LTransData. The slots of LTransData are the Laplace transform function, its region of convergence (two slots), and the Laplace transform variables. In this case, LaPlace used "s" as the transform variable (the default). ;[s] 17:0,0;1,1;17,2;24,3;78,4;91,5;104,6;114,7;123,8;130,9;131,10;140,11;198,12;215,13;242,14;249,15;298,16;301,-1; 17:1,12,9,Times,1,14,0,0,0;1,13,10,Times,0,14,0,0,0;1,12,9,Times,1,14,0,0,0;1,13,10,Times,0,14,0,0,0;1,12,9,Times,1,14,0,0,0;1,13,10,Times,0,14,0,0,0;1,12,9,Times,1,14,0,0,0;1,13,10,Times,0,14,0,0,0;1,12,9,Times,1,14,0,0,0;1,13,10,Times,0,14,0,0,0;1,12,9,Times,1,14,0,0,0;1,13,10,Times,0,14,0,0,0;1,12,9,Times,1,14,0,0,0;1,13,10,Times,0,14,0,0,0;1,12,9,Times,1,14,0,0,0;1,13,10,Times,0,14,0,0,0;1,10,8,Times,1,12,0,0,0; :[font = subsubsection; inactive; Cclosed; preserveAspect; startGroup; ] Two-sided and one-sided transforms :[font = text; inactive; preserveAspect; ] The Laplace transform assumes that the time function is two-sided. In order to specify a one-sided time function, the continuous step function CStep should appear in each multiplicative term. For example, the Laplace transform of f(t) = { 1 for t > 0, 1/2 for t = 0, and 0 elsewhere } is 1/s: ;[s] 11:0,0;2,1;6,2;23,3;145,4;152,5;212,6;231,7;233,8;289,9;291,10;297,-1; 11:1,12,9,Times,1,14,0,0,0;1,13,10,Times,0,14,0,0,0;1,12,9,Times,1,14,0,0,0;1,13,10,Times,0,14,0,0,0;1,12,9,Times,1,14,0,0,0;1,13,10,Times,0,14,0,0,0;1,12,9,Times,1,14,0,0,0;1,13,10,Times,0,14,0,0,0;1,12,9,Times,1,14,0,0,0;1,13,10,Times,0,14,0,0,0;1,10,8,Times,1,12,0,0,0; :[font = input; Cclosed; preserveAspect; startGroup; ] LaPlace[ CStep[t], t, s ] :[font = output; output; inactive; preserveAspect; endGroup; ] LTransData[s^(-1), Rminus[0], Rplus[DirectedInfinity[1]], LVariables[s]] ;[o] 1 LTransData[-, Rminus[0], Rplus[Infinity], LVariables[s]] s :[font = input; Cclosed; preserveAspect; startGroup; ] You can only pick up the first element in the LTransData. :[font = input; preserveAspect; ] LaPlace[ CStep[t], t, s ][[1]] :[font = output; output; inactive; preserveAspect; endGroup; ] s^(-1) ;[o] 1 - s :[font = text; inactive; preserveAspect; ] CStep[t] is the continuous step function. The left-sided version of this function, CStep[-t], has the following Laplace transform: ;[s] 5:0,0;10,1;86,2;97,3;114,4;134,-1; 5:1,12,9,Times,1,14,0,0,0;1,13,10,Times,0,14,0,0,0;1,12,9,Times,1,14,0,0,0;1,13,10,Times,0,14,0,0,0;1,10,8,Times,1,12,0,0,0; :[font = input; Cclosed; preserveAspect; startGroup; ] LaPlace[ CStep[-t], t, s ] :[font = output; output; inactive; preserveAspect; endGroup; endGroup; ] LTransData[-s^(-1), Rminus[DirectedInfinity[-1]], Rplus[0], LVariables[s]] ;[o] 1 LTransData[-(-), Rminus[-Infinity], Rplus[0], LVariables[s]] s :[font = subsubsection; inactive; Cclosed; preserveAspect; startGroup; ] Optional arguments (options) :[font = text; inactive; preserveAspect; ] If a user supplies the Laplace transform variable, then the user can also specify options. The default options are: ;[s] 4:0,0;2,1;25,2;43,3;119,-1; 4:1,12,9,Times,1,14,0,0,0;1,13,10,Times,0,14,0,0,0;1,12,9,Times,1,14,0,0,0;1,11,8,Times,0,12,0,0,0; :[font = input; Cclosed; preserveAspect; startGroup; ] Options[LaPlace] :[font = output; output; inactive; preserveAspect; endGroup; ] {Dialogue -> True, Simplify -> True, TransformLookup -> {}} ;[o] {Dialogue -> True, Simplify -> True, TransformLookup -> {}} :[font = text; inactive; preserveAspect; ] :[font = subsubtitle; inactive; Cclosed; preserveAspect; left; startGroup; ] -- Dialogue Option :[font = text; inactive; preserveAspect; ] If set to True or All, the Dialogue setting will cause LaPlace to report any assumptions being made about the parameters in the continuous-time function. It will also report those functions which it could not transform. Proper usage of the Dialogue option is: ;[s] 12:0,0;2,1;11,2;17,3;19,4;25,5;28,6;38,7;56,8;65,9;244,10;253,11;264,-1; 12:1,12,9,Times,1,14,0,0,0;1,13,10,Times,0,14,0,0,0;1,12,9,Times,1,14,0,0,0;1,13,10,Times,0,14,0,0,0;1,12,9,Times,1,14,0,0,0;1,13,10,Times,0,14,0,0,0;1,12,9,Times,1,14,0,0,0;1,13,10,Times,0,14,0,0,0;1,12,9,Times,1,14,0,0,0;1,13,10,Times,0,14,0,0,0;1,12,9,Times,1,14,0,0,0;1,11,8,Times,0,12,0,0,0; :[font = input; Cclosed; preserveAspect; startGroup; ] LaPlace[ Exp[t], t, s, Dialogue -> True ] :[font = output; output; inactive; preserveAspect; endGroup; ] LTransData[Delta[-1 + s], Rminus[1], Rplus[1], LVariables[s]] ;[o] LTransData[Delta[-1 + s], Rminus[1], Rplus[1], LVariables[s]] :[font = text; inactive; preserveAspect; endGroup; ] In this case, we have asked for the two-sided Laplace transform of Exp[t], which does not exist. Since Dialogue is enabled (which is the default anyway), LaPlace reports that it cannot find the transform of Exp[t]. Whether Dialogue is enabled or not, the Laplace rule base will return an invalid Laplace transform object for those forward transform which do not exist. ;[s] 18:0,0;1,1;46,2;65,3;67,4;76,5;104,6;114,7;155,8;164,9;209,10;218,11;225,12;235,13;257,14;266,15;298,16;306,17;372,-1; 18:1,12,9,Times,1,14,0,0,0;1,13,10,Times,0,14,0,0,0;1,12,9,Times,1,14,0,0,0;1,13,10,Times,0,14,0,0,0;1,12,9,Times,1,14,0,0,0;1,13,10,Times,0,14,0,0,0;1,12,9,Times,1,14,0,0,0;1,13,10,Times,0,14,0,0,0;1,12,9,Times,1,14,0,0,0;1,13,10,Times,0,14,0,0,0;1,12,9,Times,1,14,0,0,0;1,13,10,Times,0,14,0,0,0;1,12,9,Times,1,14,0,0,0;1,13,10,Times,0,14,0,0,0;1,12,9,Times,1,14,0,0,0;1,13,10,Times,0,14,0,0,0;1,12,9,Times,1,14,0,0,0;1,11,8,Times,0,12,0,0,0; :[font = subsubtitle; inactive; Cclosed; preserveAspect; left; startGroup; ] -- TransformLookup Option :[font = text; inactive; preserveAspect; ] The TransformLookup option allows users to specify their own transform pairs. One consequence of this is that users can now to transforms of general functions like x[t] without having to define x[t] as a formula. For example, ;[s] 8:0,0;2,1;5,2;22,3;166,4;172,5;196,6;202,7;230,-1; 8:1,12,9,Times,1,14,0,0,0;1,13,10,Times,0,14,0,0,0;1,12,9,Times,1,14,0,0,0;1,13,10,Times,0,14,0,0,0;1,12,9,Times,1,14,0,0,0;1,13,10,Times,0,14,0,0,0;1,12,9,Times,1,14,0,0,0;1,11,8,Times,0,12,0,0,0; :[font = input; Cclosed; preserveAspect; startGroup; ] LaPlace[ a x[t], t, s, TransformLookup -> {x[t] :> X[s]} ] :[font = output; output; inactive; preserveAspect; endGroup; ] LTransData[a*X[s], Rminus[DirectedInfinity[-1]], Rplus[DirectedInfinity[1]], LVariables[s]] ;[o] LTransData[a X[s], Rminus[-Infinity], Rplus[Infinity], LVariables[s]] :[font = text; inactive; preserveAspect; endGroup; ] Here, we have let the Laplace transform of x[t] be X[s]. ;[s] 4:0,0;42,1;48,2;50,3;57,-1; 4:1,13,10,Times,0,14,0,0,0;1,12,9,Times,1,14,0,0,0;1,13,10,Times,0,14,0,0,0;1,10,8,Times,1,12,0,0,0; :[font = subsubtitle; inactive; Cclosed; preserveAspect; left; startGroup; ] -- Simplify Option :[font = text; inactive; preserveAspect; endGroup; endGroup; endGroup; ] The other option is Simplify. If true, the signal processing simplification rules (SPSimplificationRules) are applied to the entire transform object (including the region of convergence information). This rule base reduces expressions involving the abs, conj, imag, max, min, and real operators in Mathematica (Abs, Conjugate, Im, Max, Min, and Re, respectively). The LaPlace rule base runs faster when this option is disabled, but the expressions for the limits on the region of convergence will not be simplified. ;[s] 10:0,0;2,1;21,2;33,3;84,4;109,5;302,6;370,7;373,8;382,9;522,-1; 10:1,12,9,Times,1,14,0,0,0;1,13,10,Times,0,14,0,0,0;1,12,9,Times,1,14,0,0,0;1,13,10,Times,0,14,0,0,0;1,12,9,Times,1,14,0,0,0;1,13,10,Times,0,14,0,0,0;1,12,9,Times,1,14,0,0,0;1,13,10,Times,0,14,0,0,0;1,12,9,Times,1,14,0,0,0;1,11,8,Times,0,12,0,0,0; :[font = subsection; inactive; Cclosed; preserveAspect; startGroup; ] Rational One-Dimensional Transforms :[font = text; inactive; preserveAspect; ] The Laplace transform of f(t) = 1 for t > 0 is rational. That is, the Laplace transform function is a rational polynomial. :[font = text; inactive; preserveAspect; ] The Laplace rule base transforms time functions by using lookup tables. The following four transforms require the use of one Laplace transform property -- they all use the fact that multiplying f(t) by an exponential function is the transform of f(t) shifted by -a. The last two also invoke the additivity property. :[font = subsubsection; inactive; Cclosed; preserveAspect; startGroup; ] Transforms requiring only one property :[font = input; Cclosed; preserveAspect; startGroup; ] LaPlace[ t Exp[a t] CStep[t], t, s ] :[font = output; output; inactive; preserveAspect; endGroup; ] LTransData[(-a + s)^(-2), Rminus[Re[a]], Rplus[DirectedInfinity[1]], LVariables[s]] ;[o] -2 LTransData[(-a + s) , Rminus[Re[a]], Rplus[Infinity], LVariables[s]] :[font = input; Cclosed; preserveAspect; startGroup; ] LaPlace[ t^(n-1) Exp[a t] CStep[t] / Gamma[n], t, s ] :[font = output; output; inactive; preserveAspect; endGroup; ] LTransData[(-a + s)^(-n), Rminus[Re[a]], Rplus[DirectedInfinity[1]], LVariables[s]] ;[o] -n LTransData[(-a + s) , Rminus[Re[a]], Rplus[Infinity], LVariables[s]] :[font = input; Cclosed; preserveAspect; startGroup; ] LaPlace[ ( Exp[a t] - Exp[b t] ) CStep[t] / ( a - b ), t, s ] :[font = output; output; inactive; preserveAspect; endGroup; ] LTransData[(a*b - a*s - b*s + s^2)^(-1), Rminus[Max[Re[a], Re[b]]], Rplus[DirectedInfinity[1]], LVariables[s]] ;[o] 1 LTransData[--------------------, Rminus[Max[Re[a], Re[b]]], 2 a b - a s - b s + s Rplus[Infinity], LVariables[s]] :[font = input; Cclosed; preserveAspect; startGroup; ] LaPlace[ ( a Exp[a t] - b Exp[b t] ) CStep[t] / ( a - b ), t, s ] :[font = output; output; inactive; preserveAspect; endGroup; endGroup; ] LTransData[s/(a*b - a*s - b*s + s^2), Rminus[Max[Re[a], Re[b]]], Rplus[DirectedInfinity[1]], LVariables[s]] ;[o] s LTransData[--------------------, Rminus[Max[Re[a], Re[b]]], 2 a b - a s - b s + s Rplus[Infinity], LVariables[s]] :[font = subsubsection; inactive; Cclosed; preserveAspect; startGroup; ] Four common rational transforms :[font = input; Cclosed; preserveAspect; startGroup; ] LaPlace[ t CStep[t], t, s ] :[font = output; output; inactive; preserveAspect; endGroup; ] LTransData[s^(-2), Rminus[0], Rplus[DirectedInfinity[1]], LVariables[s]] ;[o] -2 LTransData[s , Rminus[0], Rplus[Infinity], LVariables[s]] :[font = input; Cclosed; preserveAspect; startGroup; ] LaPlace[ t CStep[t] - CStep[t], t, s ] :[font = output; output; inactive; preserveAspect; endGroup; ] LTransData[(1 - s)/s^2, Rminus[0], Rplus[DirectedInfinity[1]], LVariables[s]] ;[o] 1 - s LTransData[-----, Rminus[0], Rplus[Infinity], LVariables[s]] 2 s :[font = input; Cclosed; preserveAspect; startGroup; ] LaPlace[ t^(n - 1) CStep[t] / Gamma[n], t, s ] :[font = output; output; inactive; preserveAspect; endGroup; ] LTransData[s^(-n), Rminus[0], Rplus[DirectedInfinity[1]], LVariables[s]] ;[o] -n LTransData[s , Rminus[0], Rplus[Infinity], LVariables[s]] :[font = input; Cclosed; preserveAspect; startGroup; ] LaPlace[ Exp[a t] CStep[t], t, s ] :[font = output; output; inactive; preserveAspect; endGroup; endGroup; ] LTransData[(-a + s)^(-1), Rminus[Re[a]], Rplus[DirectedInfinity[1]], LVariables[s]] ;[o] 1 LTransData[------, Rminus[Re[a]], Rplus[Infinity], LVariables[s]] -a + s :[font = subsubsection; inactive; Cclosed; preserveAspect; startGroup; ] Hyperbolic Functions :[font = text; inactive; preserveAspect; ] Mathematica automatically translates Sinh[a t] into ( - Exp[- a t] + Exp[a t] ) / 2 so that the Laplace transform rule base does not need a lookup rule for the hyperbolic sine. This is also true for Cosh[a t], which is always rewritten as ( Exp[- a t] + Exp[a t] ) / 2. :[font = input; Cclosed; preserveAspect; startGroup; ] LaPlace[ Sinh[a t] CStep[t] / a, t, s ] :[font = output; output; inactive; preserveAspect; endGroup; ] LTransData[(-a^2 + s^2)^(-1), Rminus[Abs[a]], Rplus[DirectedInfinity[1]], LVariables[s]] ;[o] 1 LTransData[--------, Rminus[Abs[a]], Rplus[Infinity], LVariables[s]] 2 2 -a + s :[font = input; Cclosed; preserveAspect; startGroup; ] LaPlace[ Cosh[a t] CStep[t], t, s ] :[font = output; output; inactive; preserveAspect; endGroup; endGroup; ] LTransData[s/(-a^2 + s^2), Rminus[Abs[a]], Rplus[DirectedInfinity[1]], LVariables[s]] ;[o] s LTransData[--------, Rminus[Abs[a]], Rplus[Infinity], LVariables[s]] 2 2 -a + s :[font = subsubsection; inactive; Cclosed; preserveAspect; startGroup; ] Transforms of Sinusoids :[font = text; inactive; preserveAspect; ] Here are some examples of transforms of terms involving only sinusoidal functions: :[font = input; Cclosed; preserveAspect; startGroup; ] LaPlace[ Sin[a t] CStep[t] / a, t, s ] :[font = output; output; inactive; preserveAspect; endGroup; ] LTransData[(a^2 + s^2)^(-1), Rminus[0], Rplus[DirectedInfinity[1]], LVariables[s]] ;[o] 1 LTransData[-------, Rminus[0], Rplus[Infinity], LVariables[s]] 2 2 a + s :[font = input; Cclosed; preserveAspect; startGroup; ] LaPlace[ Cos[a t] CStep[t], t, s ] :[font = output; output; inactive; preserveAspect; endGroup; ] LTransData[s/(a^2 + s^2), Rminus[0], Rplus[DirectedInfinity[1]], LVariables[s]] ;[o] s LTransData[-------, Rminus[0], Rplus[Infinity], LVariables[s]] 2 2 a + s :[font = input; Cclosed; preserveAspect; startGroup; ] LaPlace[ ( 1 - Cos[a t] ) CStep[t] / a^2, t, s ] :[font = output; output; inactive; preserveAspect; endGroup; ] LTransData[(a^2*s + s^3)^(-1), Rminus[0], Rplus[DirectedInfinity[1]], LVariables[s]] ;[o] 1 LTransData[---------, Rminus[0], Rplus[Infinity], LVariables[s]] 2 3 a s + s :[font = input; Cclosed; preserveAspect; startGroup; ] LaPlace[ ( a t - Sin[a t] ) CStep[t] / a^3, t, s ] :[font = output; output; inactive; preserveAspect; endGroup; ] LTransData[(a^2*s^2 + s^4)^(-1), Rminus[0], Rplus[DirectedInfinity[1]], LVariables[s]] ;[o] 1 LTransData[----------, Rminus[0], Rplus[Infinity], LVariables[s]] 2 2 4 a s + s :[font = input; Cclosed; preserveAspect; startGroup; ] LaPlace[ ( Sin[a t] - a t Cos[a t] ) CStep[t] / ( 2 a^3 ), t, s ] :[font = output; output; inactive; preserveAspect; endGroup; ] LTransData[(a^2 + s^2)^(-2), Rminus[0], Rplus[DirectedInfinity[1]], LVariables[s]] ;[o] 2 2 -2 LTransData[(a + s ) , Rminus[0], Rplus[Infinity], LVariables[s]] :[font = input; Cclosed; preserveAspect; startGroup; ] LaPlace[ t Sin[a t] CStep[t] / ( 2 a ), t, s ] :[font = output; output; inactive; preserveAspect; endGroup; ] LTransData[s/(a^2 + s^2)^2, Rminus[0], Rplus[DirectedInfinity[1]], LVariables[s]] ;[o] s LTransData[----------, Rminus[0], Rplus[Infinity], LVariables[s]] 2 2 2 (a + s ) :[font = input; Cclosed; preserveAspect; startGroup; ] LaPlace[ t Cos[a t] CStep[t], t, s ] :[font = output; output; inactive; preserveAspect; endGroup; endGroup; ] LTransData[(-a^2 + s^2)/(a^2 + s^2)^2, Rminus[0], Rplus[DirectedInfinity[1]], LVariables[s]] ;[o] 2 2 -a + s LTransData[----------, Rminus[0], Rplus[Infinity], LVariables[s]] 2 2 2 (a + s ) :[font = subsubsection; inactive; Cclosed; preserveAspect; startGroup; ] Sinusoids Mixed With Other Functions :[font = text; inactive; preserveAspect; ] The next three examples involving continuous-time functions which are a mixture of sinusoidal and exponential terms. The first two examples are damped sinusoids. :[font = input; Cclosed; preserveAspect; startGroup; ] LaPlace[ Exp[a t] Sin[b t] CStep[t] / b, t, s ] :[font = output; output; inactive; preserveAspect; endGroup; ] LTransData[(b^2 + (-a + s)^2)^(-1), Rminus[Re[a]], Rplus[DirectedInfinity[1]], LVariables[s]] ;[o] 1 LTransData[--------------, Rminus[Re[a]], Rplus[Infinity], 2 2 b + (-a + s) LVariables[s]] :[font = input; Cclosed; preserveAspect; startGroup; ] LaPlace[ Exp[a t] Cos[b t] CStep[t], t, s ] :[font = output; output; inactive; preserveAspect; endGroup; ] LTransData[(-a + s)/(b^2 + (-a + s)^2), Rminus[Re[a]], Rplus[DirectedInfinity[1]], LVariables[s]] ;[o] -a + s LTransData[--------------, Rminus[Re[a]], Rplus[Infinity], 2 2 b + (-a + s) LVariables[s]] :[font = input; Cclosed; preserveAspect; startGroup; ] LaPlace[ ( Sin[a t] Cosh[a t] - Cos[a t] Sinh[a t] ) CStep[t], t, s ] :[font = output; output; inactive; preserveAspect; endGroup; endGroup; ] LTransData[(4*a^3)/(4*a^4 + s^4), Rminus[Abs[a]], Rplus[DirectedInfinity[1]], LVariables[s]] ;[o] 3 4 a LTransData[---------, Rminus[Abs[a]], Rplus[Infinity], LVariables[s]] 4 4 4 a + s :[font = subsubsection; inactive; Cclosed; preserveAspect; startGroup; ] Other Rational Transforms :[font = text; inactive; preserveAspect; ] For the most part, rational transforms represent some combination of continuous-time exponential and sinusoidal functions. Another example of this is the forward Laplace transform of a Laguerre polynomial of order n: :[font = input; Cclosed; preserveAspect; startGroup; ] LaPlace[ LaguerreL[n, t] CStep[t], t, s ] :[font = output; output; inactive; preserveAspect; endGroup; ] LTransData[(1 - s^(-1))^n/s, Rminus[0], Rplus[DirectedInfinity[1]], LVariables[s]] ;[o] 1 n (1 - -) s LTransData[--------, Rminus[0], Rplus[Infinity], LVariables[s]] s :[font = text; inactive; preserveAspect; ] One rational transform pair which does not contain sinusoidal or exponential terms is: :[font = input; Cclosed; preserveAspect; startGroup; ] LaPlace[ (t / (2 a))^(k - 1/2) BesselJ[k - 1/2, a t] CStep[t] / Gamma[k], t, s ] :[font = message; inactive; preserveAspect; ] Transform::incomplete: The rule base could not compute the forward Laplace transform of t -(1/2) + k 1 (-) BesselJ[-(-) + k, a t] CStep[t] with respect to t. a 2 :[font = output; output; inactive; preserveAspect; endGroup; endGroup; endGroup; ] MakeLObject[ScaleT[LForm, Laplace`LaPlace`Private`mylaplace[(t/a)^ (-1/2 + k)*BesselJ[-1/2 + k, a*t]*CStep[t], t, s, {True, True, True, True, False, True, False}, {t}, {s}, {Dialogue -> True, Simplify -> True}], ((1/2)^k*2^(1/2))/Gamma[k]], s] ;[o] -Incomplete Laplace Transform- :[font = subsection; inactive; Cclosed; preserveAspect; startGroup; ] Non-rational One-Dimensional Transforms :[font = input; Cclosed; preserveAspect; startGroup; ] LaPlace[ ( 1 / Sqrt[Pi t] + a Exp[a^2 t] Erf[a Sqrt[t]] ) CStep[t], t, s ] :[font = output; output; inactive; preserveAspect; endGroup; ] LTransData[s^(1/2)/(-a^2 + s), Rminus[Max[0, -Im[a]^2 + Re[a]^2]], Rplus[DirectedInfinity[1]], LVariables[s]] ;[o] Sqrt[s] 2 2 LTransData[-------, Rminus[Max[0, -Im[a] + Re[a] ]], Rplus[Infinity], 2 -a + s LVariables[s]] :[font = input; Cclosed; preserveAspect; startGroup; ] LaPlace[ -2 CosIntegral[t / k] CStep[t], t, s ] :[font = output; output; inactive; preserveAspect; endGroup; ] LTransData[Log[1 + k^2*s^2]/s, Rminus[0], Rplus[DirectedInfinity[1]], LVariables[s]] ;[o] 2 2 Log[1 + k s ] LTransData[--------------, Rminus[0], Rplus[Infinity], LVariables[s]] s :[font = input; Cclosed; preserveAspect; startGroup; ] LaPlace[ ( 2 Log[Pi] - 2 CosIntegral[Pi t] ) CStep[t], t, s ] :[font = output; output; inactive; preserveAspect; endGroup; ] LTransData[Log[Pi^2 + s^2]/s, Rminus[0], Rplus[DirectedInfinity[1]], LVariables[s]] ;[o] 2 2 Log[Pi + s ] LTransData[-------------, Rminus[0], Rplus[Infinity], LVariables[s]] s :[font = input; Cclosed; preserveAspect; startGroup; ] LaPlace[ CosIntegral[a t + b] CStep[t], t, s ] :[font = message; inactive; preserveAspect; ] Transform::incomplete: The rule base could not compute the forward Laplace transform of CosIntegral[b + t] CStep[t] with respect to t. :[font = output; output; inactive; preserveAspect; endGroup; ] MakeLObject[Laplace`LaPlace`Private`SimilarityL[Laplace`LaPlace`Pri\ vate`mylaplace[CosIntegral[b + t]*CStep[t], t, s, {True, True, True, True, False, True, False}, {t}, {s}, {Dialogue -> True, Simplify -> True}], s, a], s] ;[o] -Incomplete Laplace Transform- :[font = input; Cclosed; preserveAspect; startGroup; ] LaPlace[ - ExpIntegralEi[- t / k] CStep[t], t, s ] :[font = output; output; inactive; preserveAspect; endGroup; ] LTransData[Log[1 + k*s]/s, Rminus[0], Rplus[DirectedInfinity[1]], LVariables[s]] ;[o] Log[1 + k s] LTransData[------------, Rminus[0], Rplus[Infinity], LVariables[s]] s :[font = input; Cclosed; preserveAspect; startGroup; ] LaPlace[ Sin[k t] CStep[t] / t, t, s ] :[font = output; output; inactive; preserveAspect; endGroup; ] LTransData[ArcTan[k/s], Rminus[Abs[Im[k]]], Rplus[DirectedInfinity[1]], LVariables[s]] ;[o] k LTransData[ArcTan[-], Rminus[Abs[Im[k]]], Rplus[Infinity], s LVariables[s]] :[font = text; inactive; preserveAspect; ] Alternatively, :[font = input; Cclosed; preserveAspect; startGroup; ] LaPlace[ k Sinc[k t] CStep[t], t, s ] :[font = message; inactive; preserveAspect; ] Transform::incomplete: The rule base could not compute the forward Laplace transform of CStep[t] Sinc[t] with respect to t. :[font = output; output; inactive; preserveAspect; endGroup; ] MakeLObject[ScaleT[LForm, Laplace`LaPlace`Private`SimilarityL[Lapl\ ace`LaPlace`Private`mylaplace[CStep[t]*Sinc[t], t, s, {True, True, True, True, False, True, False}, {t}, {s}, {Dialogue -> True, Simplify -> True}], s, k], k], s] ;[o] -Incomplete Laplace Transform- :[font = input; Cclosed; preserveAspect; startGroup; ] LaPlace[ SinIntegral[k t + b] CStep[t], t, s ] :[font = output; output; inactive; preserveAspect; endGroup; ] LTransData[(E^((b*s)/k)*ArcTan[k/s])/s, Rminus[0], Rplus[DirectedInfinity[1]], LVariables[s]] ;[o] (b s)/k k E ArcTan[-] s LTransData[------------------, Rminus[0], Rplus[Infinity], s LVariables[s]] :[font = input; Cclosed; preserveAspect; startGroup; ] LaPlace[ CStep[t - k] / Sqrt[Pi t], t, s ] (* incorrect *) :[font = message; inactive; preserveAspect; ] Transform::incomplete: The rule base could not compute the forward Laplace transform of Sqrt[Pi] CStep[t] ----------------- with respect to t. Sqrt[k + t] :[font = output; output; inactive; preserveAspect; endGroup; ] MakeLObject[ScaleT[LForm, Laplace`LaPlace`Private`mylaplace[(Pi^ (1/2)*CStep[t])/(k + t)^(1/2), t, s, {False, False, False, False, False, True, False}, {t}, {s}, {Dialogue -> True, Simplify -> True}], 1/(E^(k*s)*Pi)], s] ;[o] -Incomplete Laplace Transform- :[font = input; Cclosed; preserveAspect; startGroup; ] LaPlace[ Sin[2 k Sqrt[t]] CStep[t] / ( Pi t ), t, s ] :[font = output; output; inactive; preserveAspect; endGroup; ] LTransData[Erf[k/s^(1/2)], Rminus[DirectedInfinity[-1]], Rplus[DirectedInfinity[1]], LVariables[s]] ;[o] k LTransData[Erf[-------], Rminus[-Infinity], Rplus[Infinity], Sqrt[s] LVariables[s]] :[font = input; Cclosed; preserveAspect; startGroup; ] LaPlace[ BesselI[n, a t] CStep[t], t, s ] :[font = output; output; inactive; preserveAspect; endGroup; ] LTransData[(s - (-a^2 + s^2)^(1/2))^n/(a^n*(-a^2 + s^2)^(1/2)), Rminus[Abs[Re[a]]], Rplus[DirectedInfinity[1]], LVariables[s]] ;[o] 2 2 n (s - Sqrt[-a + s ]) LTransData[---------------------, Rminus[Abs[Re[a]]], Rplus[Infinity], n 2 2 a Sqrt[-a + s ] LVariables[s]] :[font = input; Cclosed; preserveAspect; startGroup; ] LaPlace[ 2 BesselK[0, 2 Sqrt[2 k t]] CStep[t] / Sqrt[Pi t], t, s ] :[font = message; inactive; preserveAspect; ] Transform::incomplete: The rule base could not compute the forward Laplace transform of 3/2 Sqrt[Pi] Sqrt[t] BesselK[0, 2 Sqrt[k t]] CStep[t] with respect to t. :[font = output; output; inactive; preserveAspect; endGroup; ] MakeLObject[ScaleT[LForm, IntegrateT[LForm, Laplace`LaPlace`Private`mylaplace[Pi^(1/2)*t^(1/2)* BesselK[0, 2^(3/2)*(k*t)^(1/2)]*CStep[t], t, s, {False, False, False, True, False, True, False}, {t}, {s}, {Dialogue -> True, Simplify -> True}], s, s, DirectedInfinity[1]], 2/Pi], s] ;[o] -Incomplete Laplace Transform- :[font = input; Cclosed; preserveAspect; startGroup; ] LaPlace[ HermiteH[3, Sqrt[t]] CStep[t] / ( 3! Sqrt[Pi] ), t, s ] :[font = output; output; inactive; preserveAspect; endGroup; endGroup; ] LTransData[(1 - s)/s^(5/2), Rminus[0], Rplus[DirectedInfinity[1]], LVariables[s]] ;[o] 1 - s LTransData[-----, Rminus[0], Rplus[Infinity], LVariables[s]] 5/2 s :[font = subsection; inactive; Cclosed; preserveAspect; startGroup; ] Properties :[font = subsubsection; inactive; Cclosed; preserveAspect; startGroup; ] Additivity :[font = text; inactive; preserveAspect; ] The Laplace transform of a(t) + b(t) is A(s), the Laplace transform of a(t), plus B(s), the Laplace transform of b(t). The new region of convergence contains the intersection of the region of convergence of A(s) and B(s): :[font = input; Cclosed; preserveAspect; startGroup; ] LaPlace[ Delta[t] + CStep[t - 1], t, s, Dialogue -> All ] :[font = print; inactive; preserveAspect; ] L {CStep[-1 + t] + Delta[t]} t which becomes L {CStep[-1 + t]} + L {Delta[t]} t t which becomes L {CStep[t]} t ------------- + Transform[1, -Infinity, Infinity] s E which becomes 1 Transform[1 + ----, 0, Infinity] s E s which becomes 1 Transform[1 + ----, 0, Infinity] s E s :[font = output; output; inactive; preserveAspect; endGroup; endGroup; ] LTransData[1 + 1/(E^s*s), Rminus[0], Rplus[DirectedInfinity[1]], LVariables[s]] ;[o] 1 LTransData[1 + ----, Rminus[0], Rplus[Infinity], LVariables[s]] s E s :[font = subsubsection; inactive; Cclosed; preserveAspect; startGroup; ] Homogeneity :[font = text; inactive; preserveAspect; ] This property moves all terms not dependent on the time variable outside of the Laplace transform operator with no effect on the region of convergence: :[font = input; Cclosed; preserveAspect; startGroup; ] LaPlace[ A K CStep[t] / 2, t, s, Dialogue -> All ] :[font = print; inactive; preserveAspect; ] A K CStep[t] L {------------} t 2 which becomes L {A K CStep[t]} t ----------------- 2 which becomes A L {K CStep[t]} t ----------------- 2 which becomes A K L {CStep[t]} t ----------------- 2 which becomes A K Transform[---, 0, Infinity] 2 s which becomes A K Transform[---, 0, Infinity] 2 s :[font = output; output; inactive; preserveAspect; endGroup; endGroup; ] LTransData[(A*K)/(2*s), Rminus[0], Rplus[DirectedInfinity[1]], LVariables[s]] ;[o] A K LTransData[---, Rminus[0], Rplus[Infinity], LVariables[s]] 2 s :[font = subsubsection; inactive; Cclosed; preserveAspect; startGroup; ] Shift-in-Time :[font = input; Cclosed; preserveAspect; startGroup; ] LaPlace[ Exp[t] CStep[t], t, s ] :[font = output; output; inactive; preserveAspect; endGroup; ] LTransData[(-1 + s)^(-1), Rminus[1], Rplus[DirectedInfinity[1]], LVariables[s]] ;[o] 1 LTransData[------, Rminus[1], Rplus[Infinity], LVariables[s]] -1 + s :[font = input; Cclosed; preserveAspect; startGroup; ] LaPlace[ Exp[t - 7] CStep[t - 7], t, s ] :[font = output; output; inactive; preserveAspect; endGroup; endGroup; ] LTransData[1/(E^(7*s)*(-1 + s)), Rminus[1], Rplus[DirectedInfinity[1]], LVariables[s]] ;[o] 1 LTransData[-------------, Rminus[1], Rplus[Infinity], LVariables[s]] 7 s E (-1 + s) :[font = subsubsection; inactive; Cclosed; preserveAspect; startGroup; ] Multiplication-by-Exponential :[font = text; inactive; preserveAspect; ] The multiplication of f(t) by exp(a t) shifts F(s), the Laplace transform of f(t), to the right by a, and the region of convergence is shifted by the real part of a: :[font = input; Cclosed; preserveAspect; startGroup; ] LaPlace[ Cos[t] CStep[t], t, s ] :[font = output; output; inactive; preserveAspect; endGroup; ] LTransData[s/(1 + s^2), Rminus[0], Rplus[DirectedInfinity[1]], LVariables[s]] ;[o] s LTransData[------, Rminus[0], Rplus[Infinity], LVariables[s]] 2 1 + s :[font = input; Cclosed; preserveAspect; startGroup; ] LaPlace[ Exp[a t] Cos[t] CStep[t], t, s ] :[font = output; output; inactive; preserveAspect; endGroup; endGroup; ] LTransData[(-a + s)/(1 + (-a + s)^2), Rminus[Re[a]], Rplus[DirectedInfinity[1]], LVariables[s]] ;[o] -a + s LTransData[-------------, Rminus[Re[a]], Rplus[Infinity], 2 1 + (-a + s) LVariables[s]] :[font = subsubsection; inactive; Cclosed; preserveAspect; startGroup; ] Multiplication-by-Time :[font = text; inactive; preserveAspect; ] Multiplication in time corresponds to differentiation in the Laplace domain with no effect on the region of convergence: :[font = input; Cclosed; preserveAspect; startGroup; ] LaPlace[ Exp[a t] CStep[t], t, s ] :[font = output; output; inactive; preserveAspect; endGroup; ] LTransData[(-a + s)^(-1), Rminus[Re[a]], Rplus[DirectedInfinity[1]], LVariables[s]] ;[o] 1 LTransData[------, Rminus[Re[a]], Rplus[Infinity], LVariables[s]] -a + s :[font = input; Cclosed; preserveAspect; startGroup; ] LaPlace[ t Exp[a t] CStep[t], t, s ] :[font = output; output; inactive; preserveAspect; endGroup; endGroup; ] LTransData[(-a + s)^(-2), Rminus[Re[a]], Rplus[DirectedInfinity[1]], LVariables[s]] ;[o] -2 LTransData[(-a + s) , Rminus[Re[a]], Rplus[Infinity], LVariables[s]] :[font = subsubsection; inactive; Cclosed; preserveAspect; startGroup; ] Sinusoidal Modulation :[font = input; Cclosed; preserveAspect; startGroup; ] LaPlace[ BesselJ[v, a t] CStep[t], t, s ] :[font = output; output; inactive; preserveAspect; endGroup; ] LTransData[(-s + (a^2 + s^2)^(1/2))^v/(a^v*(a^2 + s^2)^(1/2)), Rminus[Abs[Im[a]]], Rplus[DirectedInfinity[1]], LVariables[s]] ;[o] 2 2 v (-s + Sqrt[a + s ]) LTransData[---------------------, Rminus[Abs[Im[a]]], v 2 2 a Sqrt[a + s ] Rplus[Infinity], LVariables[s]] :[font = input; Cclosed; preserveAspect; startGroup; ] LaPlace[ Sin[a t] BesselJ[v, a t] CStep[t], t, s ] :[font = output; output; inactive; preserveAspect; endGroup; endGroup; ] LTransData[I/2*(-((I*a - s + (s*(-2*I*a + s))^(1/2))^v/ (a^v*(s*(-2*I*a + s))^(1/2))) + (-I*a - s + (s*(2*I*a + s))^(1/2))^v/(a^v*(s*(2*I*a + s))^(1/2)) ), Rminus[Abs[Im[a]]], Rplus[DirectedInfinity[1]], LVariables[s]] ;[o] v I (I a - s + Sqrt[s (-2 I a + s)]) LTransData[- (-(---------------------------------) + 2 v a Sqrt[s (-2 I a + s)] v (-I a - s + Sqrt[s (2 I a + s)]) ---------------------------------), Rminus[Abs[Im[a]]], v a Sqrt[s (2 I a + s)] Rplus[Infinity], LVariables[s]] :[font = subsubsection; inactive; Cclosed; preserveAspect; startGroup; ] Reversal-in-Time :[font = input; Cclosed; preserveAspect; startGroup; ] LaPlace[ Exp[t] CStep[t], t, s ] :[font = output; output; inactive; preserveAspect; endGroup; ] LTransData[(-1 + s)^(-1), Rminus[1], Rplus[DirectedInfinity[1]], LVariables[s]] ;[o] 1 LTransData[------, Rminus[1], Rplus[Infinity], LVariables[s]] -1 + s :[font = input; Cclosed; preserveAspect; startGroup; ] LaPlace[ Exp[-t] CStep[-t], t, s ] :[font = output; output; inactive; preserveAspect; endGroup; ] LTransData[(-1 - s)^(-1), Rminus[DirectedInfinity[-1]], Rplus[-1], LVariables[s]] ;[o] 1 LTransData[------, Rminus[-Infinity], Rplus[-1], LVariables[s]] -1 - s :[font = input; Cclosed; preserveAspect; startGroup; ] LaPlace[ Exp[-t] CStep[t], t, s ] :[font = output; output; inactive; preserveAspect; endGroup; endGroup; ] LTransData[(1 + s)^(-1), Rminus[-1], Rplus[DirectedInfinity[1]], LVariables[s]] ;[o] 1 LTransData[-----, Rminus[-1], Rplus[Infinity], LVariables[s]] 1 + s :[font = subsubsection; inactive; Cclosed; preserveAspect; startGroup; ] Similarity :[font = input; Cclosed; preserveAspect; startGroup; ] LaPlace[ Delta[t], t, s ] :[font = output; output; inactive; preserveAspect; endGroup; ] LTransData[1, Rminus[DirectedInfinity[-1]], Rplus[DirectedInfinity[1]], LVariables[s]] ;[o] LTransData[1, Rminus[-Infinity], Rplus[Infinity], LVariables[s]] :[font = input; Cclosed; preserveAspect; startGroup; ] LaPlace[ Delta[a t], t, s ] :[font = output; output; inactive; preserveAspect; endGroup; endGroup; endGroup; endGroup; ] LTransData[Abs[a]^(-1), Rminus[DirectedInfinity[-1]], Rplus[DirectedInfinity[1]], LVariables[s]] ;[o] 1 LTransData[------, Rminus[-Infinity], Rplus[Infinity], LVariables[s]] Abs[a] :[font = section; inactive; Cclosed; preserveAspect; startGroup; ] Inverse Laplace Transforms :[font = text; inactive; Cclosed; preserveAspect; startGroup; ] The inverse Laplace transform rule base is InvLaPlace. InvLaPlace returns the two-sided continuous-time function f(t) that represents the Laplace transform F(s): :[font = postscript; PostScript; formatAsPostScript; output; inactive; preserveAspect; height = 94; pictureLeft = 17; pictureWidth = 389; pictureHeight = 239; ] %! %%Creator: Mathematica %%AspectRatio: 1 MathPictureStart /Courier findfont 10 scalefont setfont % Scaling calculations 0.583333 0.0833333 0.833333 0.0833333 [ [ 0 0 0 0 ] [ 1 1 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath %%Object: Graphics [ ] 0 setdash 0 setgray gsave grestore 0 0 moveto 1 0 lineto 1 1 lineto 0 1 lineto closepath clip newpath gsave 0.0075 setlinewidth 0.41667 0.925 moveto 0.40417 0.91667 lineto 0.39583 0.9 lineto 0.39583 0.76667 lineto 0.3875 0.75 lineto 0.375 0.74167 lineto stroke newpath 0.39583 0.83333 0.01667 0 365.73 arc stroke gsave /Plain findfont 14 scalefont setfont [(L)] 0 0.83333 -1 0 Mshowa grestore gsave /Plain findfont 14 scalefont setfont [({F\(s\)})] 0.08333 0.83333 -1 0 Mshowa grestore gsave /Plain findfont 14 scalefont setfont [(=)] 0.275 0.83333 -1 0 Mshowa grestore gsave /Plain findfont 10 scalefont setfont [(-1)] 0.03333 0.88333 -1 0 Mshowa grestore gsave /Plain findfont 12 scalefont setfont [(o)] 0.49167 0.95833 -1 0 Mshowa grestore gsave /Plain findfont 12 scalefont setfont [(a+jo)] 0.5 0.95833 1 0 Mshowa grestore gsave /Plain findfont 12 scalefont setfont [(o)] 0.425 0.70833 -1 0 Mshowa grestore gsave /Plain findfont 12 scalefont setfont [(a-jo)] 0.43333 0.70833 1 0 Mshowa grestore gsave /Plain findfont 14 scalefont setfont [(F\(s\))] 0.47917 0.83333 -1 0 Mshowa grestore gsave /Plain findfont 14 scalefont setfont [(e)] 0.60833 0.83333 -1 0 Mshowa grestore gsave /Plain findfont 14 scalefont setfont [(ds)] 0.70833 0.83333 -1 0 Mshowa grestore gsave /Plain findfont 10 scalefont setfont [(st)] 0.65 0.875 -1 0 Mshowa grestore gsave /Plain findfont 14 scalefont setfont [(\(2\))] 0.91667 0.83333 -1 0 Mshowa grestore grestore % End of Graphics MathPictureEnd :[font = text; inactive; preserveAspect; endGroup; ] [Oppenheim and Willsky, 1983]. This is an integral of a function of complex variable s (which is different from the forward Laplace transform definition which involves an integral of real variable t). In this case, the contour of integration is a vertical line through (a, 0) connected with a semicircle of infinite radius in the s-plane. :[font = subsection; inactive; Cclosed; preserveAspect; startGroup; ] Invoking the Inverse Laplace Transform Rule Base :[font = text; inactive; preserveAspect; ] The calling sequence for InvLaPlace is similar to that for LaPlace: :[font = input; Cclosed; preserveAspect; startGroup; ] InvLaPlace[ 1/s, s, t ] :[font = output; output; inactive; preserveAspect; endGroup; ] CStep[t] ;[o] CStep[t] :[font = text; inactive; preserveAspect; ] Again, the third argument is optional and defaults to t. If the time variable is provided, then these options can also be used: :[font = input; Cclosed; preserveAspect; startGroup; ] Options[ InvLaPlace ] :[font = output; output; inactive; preserveAspect; endGroup; ] {Apart -> Rational, Dialogue -> True, Simplify -> True, Laplace`InvLaPlace`Private`Terms -> 10, TransformLookup -> {}} ;[o] {Apart -> Rational, Dialogue -> True, Simplify -> True, Laplace`InvLaPlace`Private`Terms -> 10, TransformLookup -> {}} :[font = text; inactive; preserveAspect; ] For the meaning of the Dialogue, TransformLookup, and Simplify options, see the Introduction to the Forward Laplace Transforms section. The Dialogue -> All option will still cause the rule base to display each step of the transformation process. :[font = subsubtitle; inactive; Cclosed; preserveAspect; left; startGroup; ] -- Terms Option :[font = text; inactive; preserveAspect; endGroup; ] The Terms options specifies how many terms to use if a power series expansion is used. Setting Terms to False disables the Power Series Strategy for that call to the rule base. The power series strategy is only used if all other attempts an obtaining the inverse have been tried. :[font = subsubtitle; inactive; Cclosed; preserveAspect; left; startGroup; ] -- Apart Option :[font = text; inactive; preserveAspect; endGroup; endGroup; ] This option is an attempt to work around the way that Mathematica does partial fractions decompositions. Mathematica requires that the factors be rational numbers. However, as engineers, there are times that we would like to perform this decomposition with real-valued roots, even though such an expansion violates rigorous mathematics. When Apart -> Rational, then partial fractions decomposition only occurs when the roots are either rational numbers or symbols. When Apart -> Real, then partial fractions will be carried out whenever each roots is a floating point number, a rational, or a symbol. Unfortunately, Apart -> Real means that we have to work around the Mathematica primitive Apart which results is a very slow partial fractions expansion. :[font = subsection; inactive; Cclosed; preserveAspect; startGroup; ] Rational One-Dimensional Transforms :[font = text; inactive; Cclosed; preserveAspect; startGroup; ] Inverse transform of a constant: :[font = input; Cclosed; preserveAspect; startGroup; ] InvLaPlace[ c, s, t ] :[font = output; output; inactive; preserveAspect; endGroup; endGroup; ] c*Delta[t] ;[o] c Delta[t] :[font = text; inactive; Cclosed; preserveAspect; startGroup; ] The next six examples are inverse transformed by the same transform pair (rule): :[font = input; Cclosed; preserveAspect; startGroup; ] InvLaPlace[ 1/s, s, t ] :[font = output; output; inactive; preserveAspect; endGroup; ] CStep[t] ;[o] CStep[t] :[font = input; Cclosed; preserveAspect; startGroup; ] InvLaPlace[ 1/s^(3/2), s, t ] :[font = output; output; inactive; preserveAspect; endGroup; ] (2*t^(1/2)*CStep[t])/Pi^(1/2) ;[o] 2 Sqrt[t] CStep[t] ------------------ Sqrt[Pi] :[font = input; Cclosed; preserveAspect; startGroup; ] InvLaPlace[ 1/s^Pi, s, t ] :[font = output; output; inactive; preserveAspect; endGroup; ] (t^(-1 + Pi)*CStep[t])/Gamma[Pi] ;[o] -1 + Pi t CStep[t] ----------------- Gamma[Pi] :[font = input; Cclosed; preserveAspect; startGroup; ] InvLaPlace[ 1 / ( s - a ), s, t ] :[font = output; output; inactive; preserveAspect; endGroup; ] E^(a*t)*CStep[t] ;[o] a t E CStep[t] :[font = input; Cclosed; preserveAspect; startGroup; ] InvLaPlace[ 1 / ( s - a )^2, s, t ] :[font = output; output; inactive; preserveAspect; endGroup; ] E^(a*t)*t*CStep[t] ;[o] a t E t CStep[t] :[font = input; Cclosed; preserveAspect; startGroup; ] InvLaPlace[ 1 / ( s - a )^Pi, s, t ] :[font = output; output; inactive; preserveAspect; endGroup; endGroup; ] (E^(a*t)*t^(-1 + Pi)*CStep[t])/Gamma[Pi] ;[o] a t -1 + Pi E t CStep[t] ---------------------- Gamma[Pi] :[font = text; inactive; Cclosed; preserveAspect; startGroup; ] Multiple poles (handled by partial fractions expansion): :[font = input; Cclosed; preserveAspect; startGroup; ] InvLaPlace[ 1 / ((s - a)(s - b)), s, t ] :[font = print; inactive; preserveAspect; ] ( After performing partial fraction expansion on 1 ----------------- (-a + s) (-b + s) using its exact roots: 1 1 ---------------- - ---------------- . ) (a - b) (-a + s) (a - b) (-b + s) :[font = output; output; inactive; preserveAspect; endGroup; ] ((-E^(a*t) + E^(b*t))*CStep[t])/(-a + b) ;[o] a t b t (-E + E ) CStep[t] ----------------------- -a + b :[font = input; Cclosed; preserveAspect; startGroup; ] InvLaPlace[ 1 / ((s - a)(s - b)(s - c)), s, t ] :[font = print; inactive; preserveAspect; ] ( After performing partial fraction expansion on 1 -------------------------- (-a + s) (-b + s) (-c + s) using its exact roots: 1 1 ------------------------ - ------------------------ - (a - b) (a - c) (-a + s) (a - b) (b - c) (-b + s) 1 ------------------------- . ) (a - c) (-b + c) (-c + s) :[font = output; output; inactive; preserveAspect; endGroup; endGroup; ] ((-(b*E^(a*t)) + c*E^(a*t) + a*E^(b*t) - c*E^(b*t) - a*E^(c*t) + b*E^(c*t))*CStep[t])/((-a + b)*(-a + c)*(-b + c)) ;[o] a t a t b t b t c t c t (-(b E ) + c E + a E - c E - a E + b E ) CStep[t] ----------------------------------------------------------------- (-a + b) (-a + c) (-b + c) :[font = text; inactive; Cclosed; preserveAspect; startGroup; ] Multiple complex-valued poles :[font = input; Cclosed; preserveAspect; startGroup; ] InvLaPlace[ (s^2 + 3)/(s^2 + 2 s + 2), s, t ] :[font = print; inactive; preserveAspect; ] ( After performing partial fraction expansion on 2 3 + s ------------ 2 2 + 2 s + s using its exact roots: 1 2 (-(-) + s) 2 1 - ------------ . ) 2 2 + 2 s + s ( After performing partial fraction expansion on 1 -(-) + s 2 ------------ 2 2 + 2 s + s using its exact roots: 1 3 I 1 3 I -(-) + --- -(-) - --- 2 4 2 4 ---------- + ---------- . ) -1 - I - s -1 + I - s :[font = output; output; inactive; preserveAspect; endGroup; ] -(E^((-1 - I)*t)*(2 - 3*I + (2 + 3*I)*E^(2*I*t))*CStep[t])/2 + Delta[t] ;[o] (-1 - I) t 2 I t -(E (2 - 3 I + (2 + 3 I) E ) CStep[t]) ---------------------------------------------------- + Delta[t] 2 :[font = input; Cclosed; preserveAspect; startGroup; ] myapart[ fun_, s_ ] := Block [ {newfun, s0}, newfun = fun /. s -> s0; rootlist = Sort[ Solve[ newfun == 0, s0 ] ]; numroots = Length[rootlist]; denom = Product[ s0 /. rootlist[[i]], {i, 1, numroots} ]; denom ] :[font = message; inactive; preserveAspect; endGroup; ] General::spell1: Possible spelling error: new symbol name "newfun" is similar to existing symbol "newfuns". :[font = input; Cclosed; preserveAspect; startGroup; ] InvLaPlace[ 1/(s^2 + 2 s + 2)^2, s, t, Dialogue -> All ] :[font = print; inactive; preserveAspect; ] -1 2 -2 L {(2 + 2 s + s ) } s which becomes -1 2 -2 L {(2 + 2 s + s ) } s which becomes ( After performing partial fraction expansion on 2 -2 (2 + 2 s + s ) using its exact roots: I I - - -1 4 1 4 --------------- - ---------- - --------------- + ---------- . ) 2 -1 - I - s 2 -1 + I - s 4 (-1 - I - s) 4 (-1 + I - s) I I - - -1 -1 4 1 4 L {--------------- - ---------- - --------------- + ----------} s 2 -1 - I - s 2 -1 + I - s 4 (-1 - I - s) 4 (-1 + I - s) which becomes -I I -- - -1 4 1 4 L {---------- - --------------- + ----------} + s -1 - I - s 2 -1 + I - s 4 (-1 + I - s) -1 -1 L {---------------} s 2 4 (-1 - I - s) which becomes I -1 -2 - L {(-1 - I - s) } -1 -1 4 s L {--------------- + ----------} - -------------------- + s 2 -1 + I - s 4 4 (-1 + I - s) -I -- -1 4 L {----------} s -1 - I - s which becomes I - -I -1 1 -1 -1 -1 4 -- L {----------} + L {---------------} + L {----------} - 4 s -1 - I - s s 2 s -1 + I - s 4 (-1 + I - s) -1 -2 L {(1 + I + s) } s ------------------- 4 which becomes -1 -2 (-1 - I) t L {(-1 + I - s) } -(E t CStep[t]) s ------------------------- - -------------------- + 4 4 I -1 1 I -1 1 - L {----------} - - L {-(---------)} 4 s -1 + I - s 4 s 1 + I + s which becomes (-1 - I) t I (-1 - I) t E t CStep[t] - E CStep[t] - ---------------------- - 4 4 -1 -2 L {(1 - I + s) } s I -1 1 ------------------- + - L {-(---------)} 4 4 s 1 - I + s which becomes I (-1 - I) t I (-1 + I) t - E CStep[t] - - E CStep[t] - 4 4 (-1 - I) t (-1 + I) t E t CStep[t] E t CStep[t] ---------------------- - ---------------------- 4 4 which becomes I (-1 - I) t I (-1 + I) t - E CStep[t] - - E CStep[t] - 4 4 (-1 - I) t (-1 + I) t E t CStep[t] E t CStep[t] ---------------------- - ---------------------- 4 4 which simplifies to (-1 - I) t 2 I t 2 I t -(E (-I + I E + t + E t) CStep[t]) ------------------------------------------------------ 4 :[font = output; output; inactive; preserveAspect; endGroup; endGroup; ] -(E^((-1 - I)*t)*(-I + I*E^(2*I*t) + t + E^(2*I*t)*t)*CStep[t])/4 ;[o] (-1 - I) t 2 I t 2 I t -(E (-I + I E + t + E t) CStep[t]) ------------------------------------------------------ 4 :[font = text; inactive; Cclosed; preserveAspect; startGroup; ] Laplace transforms which represent pure sinusoids in the time domain: :[font = input; Cclosed; preserveAspect; startGroup; ] InvLaPlace[ 1 / ( s^2 + a^2 ), s, t ] :[font = output; output; inactive; preserveAspect; endGroup; ] (CStep[t]*Sin[(a^2)^(1/2)*t])/(a^2)^(1/2) ;[o] 2 CStep[t] Sin[Sqrt[a ] t] ------------------------ 2 Sqrt[a ] :[font = input; Cclosed; preserveAspect; startGroup; ] InvLaPlace[ s / ( s^2 + a^2 ), s, t ] :[font = output; output; inactive; preserveAspect; endGroup; ] Cos[(a^2)^(1/2)*t]*CStep[t] ;[o] 2 Cos[Sqrt[a ] t] CStep[t] :[font = input; Cclosed; preserveAspect; startGroup; ] InvLaPlace[ 1 / ( s^2 - a^2 ), s, t ] :[font = output; output; inactive; preserveAspect; endGroup; ] (CStep[t]*Sinh[(a^2)^(1/2)*t])/(a^2)^(1/2) ;[o] 2 CStep[t] Sinh[Sqrt[a ] t] ------------------------- 2 Sqrt[a ] :[font = input; Cclosed; preserveAspect; startGroup; ] InvLaPlace[ s / ( s^2 - a^2 ), s, t ] :[font = output; output; inactive; preserveAspect; endGroup; ] Cos[(-a^2)^(1/2)*t]*CStep[t] ;[o] 2 Cos[Sqrt[-a ] t] CStep[t] :[font = input; Cclosed; preserveAspect; startGroup; ] InvLaPlace[ 1 / ( s^2 ( s^2 + a^2 ) ), s, t ] :[font = print; inactive; preserveAspect; ] ( After performing partial fraction expansion on 1 ------------ 2 2 2 s (a + s ) using its exact roots: 1 1 ----- - ------------ . ) 2 2 2 2 2 a s a (a + s ) :[font = output; output; inactive; preserveAspect; endGroup; ] (CStep[t]*(a^2*t - (a^2)^(1/2)*Sin[(a^2)^(1/2)*t]))/a^4 ;[o] 2 2 2 CStep[t] (a t - Sqrt[a ] Sin[Sqrt[a ] t]) ------------------------------------------ 4 a :[font = input; Cclosed; preserveAspect; startGroup; ] InvLaPlace[ 1 / ( s^2 + a^2 )^2, s, t ] :[font = output; output; inactive; preserveAspect; endGroup; ] (CStep[t]*(-((a^2)^(1/2)*t*Cos[(a^2)^(1/2)*t]) + Sin[(a^2)^(1/2)*t]))/ (2*(a^2)^(3/2)) ;[o] 2 2 2 CStep[t] (-(Sqrt[a ] t Cos[Sqrt[a ] t]) + Sin[Sqrt[a ] t]) ---------------------------------------------------------- 2 3/2 2 (a ) :[font = input; Cclosed; preserveAspect; startGroup; ] InvLaPlace[ s^2 / ( s^2 + a^2 )^2, s, t ] :[font = print; inactive; preserveAspect; ] ( After performing partial fraction expansion on 2 s ---------- 2 2 2 (a + s ) using its exact roots: 2 a 1 -(----------) + ------- . ) 2 2 2 2 2 (a + s ) a + s :[font = output; output; inactive; preserveAspect; endGroup; ] (CStep[t]*(a^2*t*Cos[(a^2)^(1/2)*t] + (a^2)^(1/2)*Sin[(a^2)^(1/2)*t]))/(2*a^2) ;[o] 2 2 2 2 CStep[t] (a t Cos[Sqrt[a ] t] + Sqrt[a ] Sin[Sqrt[a ] t]) ---------------------------------------------------------- 2 2 a :[font = input; Cclosed; preserveAspect; startGroup; ] InvLaPlace[ ( s^2 - a^2 ) / ( s^2 + a^2 )^2, s, t ] :[font = print; inactive; preserveAspect; ] ( After performing partial fraction expansion on 2 2 -a + s ---------- 2 2 2 (a + s ) using its exact roots: 2 -2 a 1 ---------- + ------- . ) 2 2 2 2 2 (a + s ) a + s :[font = output; output; inactive; preserveAspect; endGroup; endGroup; ] t*Cos[(a^2)^(1/2)*t]*CStep[t] ;[o] 2 t Cos[Sqrt[a ] t] CStep[t] :[font = text; inactive; Cclosed; preserveAspect; startGroup; ] Laplace transforms which represent damped sinusoids in the time domain: :[font = input; Cclosed; preserveAspect; startGroup; ] InvLaPlace[ 1 / ( (s - a)^2 + b^2 ), s, t ] :[font = output; output; inactive; preserveAspect; endGroup; ] (E^(a*t)*CStep[t]*Sin[(b^2)^(1/2)*t])/(b^2)^(1/2) ;[o] a t 2 E CStep[t] Sin[Sqrt[b ] t] ----------------------------- 2 Sqrt[b ] :[font = input; Cclosed; preserveAspect; startGroup; ] InvLaPlace[ (s - a) / ( (s - a)^2 + b^2 ), s, t ] :[font = output; output; inactive; preserveAspect; endGroup; ] E^(a*t)*Cos[(b^2)^(1/2)*t]*CStep[t] ;[o] a t 2 E Cos[Sqrt[b ] t] CStep[t] :[font = input; Cclosed; preserveAspect; startGroup; ] InvLaPlace[ 3 a^2 / ( s^3 + a^3 ), s, t ] :[font = output; output; inactive; preserveAspect; endGroup; ] (a^2*CStep[t]*(E^(-((a^3)^(1/3)*t)) - E^(((a^3)^(1/3)*t)/2)*(Cos[(3^(1/2)*(a^3)^(1/3)*t)/2] - 3^(1/2)*Sin[(3^(1/2)*(a^3)^(1/3)*t)/2])))/(a^3)^(2/3) ;[o] 3 1/3 2 -((a ) t) (a CStep[t] (E - 3 1/3 3 1/3 ((a ) t)/2 Sqrt[3] (a ) t E (Cos[-----------------] - 2 3 1/3 Sqrt[3] (a ) t 3 2/3 Sqrt[3] Sin[-----------------]))) / (a ) 2 :[font = input; Cclosed; preserveAspect; startGroup; ] InvLaPlace[ 4 a^3 / ( s^4 + 4 a^4 ), s, t ] :[font = output; output; inactive; preserveAspect; endGroup; ] (a^3*CStep[t]*(Cosh[(a^4)^(1/4)*t]*Sin[(a^4)^(1/4)*t] - Cos[(a^4)^(1/4)*t]*Sinh[(a^4)^(1/4)*t]))/(a^4)^(3/4) ;[o] 3 4 1/4 4 1/4 (a CStep[t] (Cosh[(a ) t] Sin[(a ) t] - 4 1/4 4 1/4 4 3/4 Cos[(a ) t] Sinh[(a ) t])) / (a ) :[font = input; Cclosed; preserveAspect; startGroup; ] InvLaPlace[ s / ( s^4 - a^4 ), s, t ] :[font = output; output; inactive; preserveAspect; endGroup; endGroup; endGroup; ] (-I*CStep[t]*Sin[((-1)^(1/4)*(a^4)^(1/4)*t)/2^(1/2)]* Sinh[((-1)^(1/4)*(a^4)^(1/4)*t)/2^(1/2)])/(a^4)^(1/2) ;[o] 1/4 4 1/4 1/4 4 1/4 (-1) (a ) t (-1) (a ) t -I CStep[t] Sin[-----------------] Sinh[-----------------] Sqrt[2] Sqrt[2] ---------------------------------------------------------- 4 Sqrt[a ] :[font = subsection; inactive; Cclosed; preserveAspect; startGroup; ] Non-rational One-Dimensional Transforms :[font = subsubsection; inactive; Cclosed; preserveAspect; startGroup; ] Square Root Forms :[font = text; inactive; Cclosed; preserveAspect; startGroup; ] The following four inverse transforms are transformed by the same transform pair (the last inverse transform pair gives the general case): :[font = input; Cclosed; preserveAspect; startGroup; ] InvLaPlace[ 1 / ( Sqrt[s] (s + 4) ), s, t ] :[font = output; output; inactive; preserveAspect; endGroup; ] (CStep[t]*Erfi[2*t^(1/2)])/(2*E^(4*t)) ;[o] CStep[t] Erfi[2 Sqrt[t]] ------------------------ 4 t 2 E :[font = input; Cclosed; preserveAspect; startGroup; ] InvLaPlace[ 1 / ( Sqrt[s] (s - a^2) ), s, t ] :[font = output; output; inactive; preserveAspect; endGroup; ] (E^(a^2*t)*CStep[t]*Erf[(a^2)^(1/2)*t^(1/2)])/(a^2)^(1/2) ;[o] 2 a t 2 E CStep[t] Erf[Sqrt[a ] Sqrt[t]] ------------------------------------ 2 Sqrt[a ] :[font = input; Cclosed; preserveAspect; startGroup; ] InvLaPlace[ 1 / ( Sqrt[s] (s + a^2) ), s, t ] :[font = output; output; inactive; preserveAspect; endGroup; ] (CStep[t]*Erfi[(a^2)^(1/2)*t^(1/2)])/((a^2)^(1/2)*E^(a^2*t)) ;[o] 2 CStep[t] Erfi[Sqrt[a ] Sqrt[t]] ------------------------------- 2 2 a t Sqrt[a ] E :[font = input; Cclosed; preserveAspect; startGroup; ] InvLaPlace[ 1 / ( Sqrt[s + b] (s + a) ), s, t ] :[font = output; output; inactive; preserveAspect; endGroup; endGroup; ] (CStep[t]*Erf[(-a + b)^(1/2)*t^(1/2)])/((-a + b)^(1/2)*E^(a*t)) ;[o] CStep[t] Erf[Sqrt[-a + b] Sqrt[t]] ---------------------------------- a t Sqrt[-a + b] E :[font = text; inactive; Cclosed; preserveAspect; startGroup; ] The following three inverse transforms are transformed by the same transform pair (the last inverse transform pair gives the general case): :[font = input; Cclosed; preserveAspect; startGroup; ] InvLaPlace[ Sqrt[s] / ( s + 2 ), s, t ] :[font = output; output; inactive; preserveAspect; endGroup; ] CStep[t]*(1/(Pi^(1/2)*t^(1/2)) + (2^(1/2)*Erfi[2^(1/2)*t^(1/2)])/E^(2*t)) ;[o] 1 Sqrt[2] Erfi[Sqrt[2] Sqrt[t]] CStep[t] (---------------- + -----------------------------) Sqrt[Pi] Sqrt[t] 2 t E :[font = input; Cclosed; preserveAspect; startGroup; ] InvLaPlace[ Sqrt[s] / ( s - 4 ), s, t ] :[font = output; output; inactive; preserveAspect; endGroup; ] CStep[t]*(1/(Pi^(1/2)*t^(1/2)) - 2*E^(4*t)*Erf[2*t^(1/2)]) ;[o] 1 4 t CStep[t] (---------------- - 2 E Erf[2 Sqrt[t]]) Sqrt[Pi] Sqrt[t] :[font = input; Cclosed; preserveAspect; startGroup; ] InvLaPlace[ Sqrt[s + b] / (s + c), s, t ] :[font = output; output; inactive; preserveAspect; endGroup; endGroup; ] CStep[t]*(1/(Pi^(1/2)*t^(1/2)) - (b - c)^(1/2)*E^((b - c)*t)*Erf[(b - c)^(1/2)*t^(1/2)]) ;[o] 1 CStep[t] (---------------- - Sqrt[Pi] Sqrt[t] (b - c) t Sqrt[b - c] E Erf[Sqrt[b - c] Sqrt[t]]) :[font = text; inactive; Cclosed; preserveAspect; startGroup; ] Here are several unrelated examples: :[font = input; Cclosed; preserveAspect; startGroup; ] InvLaPlace[ 1 / ( Sqrt[s] + a ), s, t ] :[font = output; output; inactive; preserveAspect; endGroup; ] CStep[t]*(1/(Pi^(1/2)*t^(1/2)) + a*E^(a^2*t)*(-1 + Erf[a*t^(1/2)])) ;[o] 2 1 a t CStep[t] (---------------- + a E (-1 + Erf[a Sqrt[t]])) Sqrt[Pi] Sqrt[t] :[font = input; Cclosed; preserveAspect; startGroup; ] InvLaPlace[ 1 / ( Sqrt[s] ( Sqrt[s] + a ) ), s, t ] :[font = print; inactive; preserveAspect; ] ( After performing partial fraction expansion on 1 --------------------- (a + Sqrt[s]) Sqrt[s] using its exact roots: 1 1 -(---------------) + --------- . ) a (a + Sqrt[s]) a Sqrt[s] :[font = output; output; inactive; preserveAspect; endGroup; ] E^(a^2*t)*CStep[t]*(1 - Erf[a*t^(1/2)]) ;[o] 2 a t E CStep[t] (1 - Erf[a Sqrt[t]]) :[font = input; Cclosed; preserveAspect; startGroup; ] InvLaPlace[ 1 / ((s + a) Sqrt[s + b]), s, t ] :[font = output; output; inactive; preserveAspect; endGroup; ] (CStep[t]*Erf[(-a + b)^(1/2)*t^(1/2)])/((-a + b)^(1/2)*E^(a*t)) ;[o] CStep[t] Erf[Sqrt[-a + b] Sqrt[t]] ---------------------------------- a t Sqrt[-a + b] E :[font = input; Cclosed; preserveAspect; startGroup; ] InvLaPlace[ ( Sqrt[s^2 + a^2] - s )^2 / Sqrt[s^2 + a^2], s, t ] :[font = output; output; inactive; preserveAspect; endGroup; ] a^2*BesselJ[2, (a^2)^(1/2)*t]*CStep[t] ;[o] 2 2 a BesselJ[2, Sqrt[a ] t] CStep[t] :[font = input; Cclosed; preserveAspect; startGroup; ] InvLaPlace[ ( s - Sqrt[s^2 - a^2] )^Pi / Sqrt[s^2 - a^2], s, t ] :[font = output; output; inactive; preserveAspect; endGroup; ] (a^2)^(Pi/2)*BesselI[Pi, (a^2)^(1/2)*t]*CStep[t] ;[o] 2 Pi/2 2 (a ) BesselI[Pi, Sqrt[a ] t] CStep[t] :[font = input; Cclosed; preserveAspect; startGroup; ] InvLaPlace[ 1 / Sqrt[ s^2 + a^2 ], s, t ] :[font = output; output; inactive; preserveAspect; endGroup; endGroup; endGroup; endGroup; ] BesselJ[0, (a^2)^(1/2)*t]*CStep[t] ;[o] 2 BesselJ[0, Sqrt[a ] t] CStep[t] :[font = subsection; inactive; Cclosed; preserveAspect; startGroup; ] Properties :[font = subsubsection; inactive; Cclosed; preserveAspect; startGroup; ] Additivity :[font = text; inactive; preserveAspect; ] The Laplace transform of A(s) + B(s) is a(t), the inverse Laplace transform of A(s), plus b(t), the inverse Laplace transform of B(s): :[font = input; Cclosed; preserveAspect; startGroup; ] InvLaPlace[ 1 + Exp[-s] / s, s, t, Dialogue -> All ] :[font = print; inactive; preserveAspect; ] -1 1 L {1 + ----} s s E s which becomes -1 -1 1 L {1} + L {----} s s s E s which becomes -1 1 Delta[t] + {L {-}} s s t -> -1 + t which becomes Delta[t] + {CStep[t]} t -> -1 + t which becomes CStep[-1 + t] + Delta[t] which becomes CStep[-1 + t] + Delta[t] :[font = output; output; inactive; preserveAspect; endGroup; endGroup; ] CStep[-1 + t] + Delta[t] ;[o] CStep[-1 + t] + Delta[t] :[font = subsubsection; inactive; Cclosed; preserveAspect; startGroup; ] Homogeneity :[font = text; inactive; preserveAspect; ] This property moves all terms not dependent on the time variable outside of the Laplace transform operator with no effect on the region of convergence: :[font = input; Cclosed; preserveAspect; startGroup; ] InvLaPlace[ A K / (2 s), s, t ] :[font = output; output; inactive; preserveAspect; endGroup; endGroup; ] (A*K*CStep[t])/2 ;[o] A K CStep[t] ------------ 2 :[font = subsubsection; inactive; Cclosed; preserveAspect; startGroup; ] Multiplication-by-Exponential :[font = text; inactive; preserveAspect; ] The multiplication of f(t) by exp(a t) shifts F(s), the Laplace transform of f(t), to the right by a, and the region of convergence is shifted by the real part of a: :[font = input; Cclosed; preserveAspect; startGroup; ] InvLaPlace[ s / ( 1 + s^2 ), s, t ] :[font = output; output; inactive; preserveAspect; endGroup; ] Cos[t]*CStep[t] ;[o] Cos[t] CStep[t] :[font = input; Cclosed; preserveAspect; startGroup; ] InvLaPlace[ Exp[-a s] s / ( 1 + s^2 ), s, t ] :[font = output; output; inactive; preserveAspect; endGroup; endGroup; ] Cos[a - t]*CStep[-a + t] ;[o] Cos[a - t] CStep[-a + t] :[font = subsubsection; inactive; Cclosed; preserveAspect; startGroup; ] Similarity :[font = input; Cclosed; preserveAspect; startGroup; ] InvLaPlace[ 1 / ((s + a) Sqrt[s + b]), s, t ] :[font = output; output; inactive; preserveAspect; endGroup; ] (CStep[t]*Erf[(-a + b)^(1/2)*t^(1/2)])/((-a + b)^(1/2)*E^(a*t)) ;[o] CStep[t] Erf[Sqrt[-a + b] Sqrt[t]] ---------------------------------- a t Sqrt[-a + b] E :[font = input; Cclosed; preserveAspect; startGroup; ] InvLaPlace[ 1 / ((c s + a) Sqrt[c s + b]), s, t ] :[font = output; output; inactive; preserveAspect; endGroup; endGroup; ] (CStep[t]*Erf[((-a + b)/c)^(1/2)*t^(1/2)])/ (((-a + b)/c)^(1/2)*c^(3/2)*E^((a*t)/c)) ;[o] -a + b CStep[t] Erf[Sqrt[------] Sqrt[t]] c ---------------------------------- -a + b 3/2 (a t)/c Sqrt[------] c E c :[font = subsubsection; inactive; Cclosed; preserveAspect; startGroup; ] Pole-in-Denominator :[font = input; Cclosed; preserveAspect; startGroup; ] InvLaPlace[ 1 / ( s - 1 ), s, t ] :[font = output; output; inactive; preserveAspect; endGroup; ] E^t*CStep[t] ;[o] t E CStep[t] :[font = input; Cclosed; preserveAspect; startGroup; ] InvLaPlace[ Log[1 + s], s, t ] :[font = output; output; inactive; preserveAspect; endGroup; ] -(CStep[t]/(E^t*t)) ;[o] CStep[t] -(--------) t E t :[font = input; Cclosed; preserveAspect; startGroup; ] InvLaPlace[ Log[1 + s] / (( s + a )(s + b)), s, t ] :[font = print; inactive; preserveAspect; ] ( After performing partial fraction expansion on Log[1 + s] --------------- (a + s) (b + s) using its exact roots: Log[1 + s] Log[1 + s] -(---------------) + --------------- . ) (a - b) (a + s) (a - b) (b + s) :[font = output; output; inactive; preserveAspect; endGroup; endGroup; ] (CStep[t]*(-(E^(b*t)*ExpIntegralEi[(-1 + a)*t]) + E^(a*t)*ExpIntegralEi[(-1 + b)*t] + E^(b*t)*Log[1 - a] - E^(a*t)*Log[1 - b]))/((-a + b)*E^((a + b)*t)) ;[o] b t (CStep[t] (-(E ExpIntegralEi[(-1 + a) t]) + a t b t E ExpIntegralEi[(-1 + b) t] + E Log[1 - a] - a t (a + b) t E Log[1 - b])) / ((-a + b) E ) :[font = subsubsection; inactive; Cclosed; preserveAspect; startGroup; ] Multiplication-by-Frequency :[font = text; inactive; preserveAspect; ] Multiplication in frequency corresponds to differentiation in the time domain: :[font = input; Cclosed; preserveAspect; startGroup; ] InvLaPlace[ 1 / Sqrt[(s + a)(s - a)], s, t ] :[font = output; output; inactive; preserveAspect; endGroup; ] BesselJ[0, I*(a^2)^(1/2)*t]*CStep[t] ;[o] 2 BesselJ[0, I Sqrt[a ] t] CStep[t] :[font = input; Cclosed; preserveAspect; startGroup; ] InvLaPlace[ s / Sqrt[(s + a)(s - a)], s, t ] :[font = output; output; inactive; preserveAspect; endGroup; ] I/2*(a^2)^(1/2)*(BesselJ[-1, I*(a^2)^(1/2)*t] - BesselJ[1, I*(a^2)^(1/2)*t])*CStep[t] + Delta[t] ;[o] I 2 2 2 - Sqrt[a ] (BesselJ[-1, I Sqrt[a ] t] - BesselJ[1, I Sqrt[a ] t]) 2 CStep[t] + Delta[t] :[font = input; Cclosed; preserveAspect; startGroup; ] LaPlace[ -a BesselI[1, - a t] CStep[t] + Delta[t], t, s ] :[font = output; output; inactive; preserveAspect; endGroup; endGroup; ] LTransData[s/(-a^2 + s^2)^(1/2), Rminus[Abs[Re[a]]], Rplus[DirectedInfinity[1]], LVariables[s]] ;[o] s LTransData[--------------, Rminus[Abs[Re[a]]], Rplus[Infinity], 2 2 Sqrt[-a + s ] LVariables[s]] :[font = subsubsection; inactive; Cclosed; preserveAspect; startGroup; ] Division-by-Frequency :[font = text; inactive; preserveAspect; ] Multiplication in frequency corresponds to differentiation in the time domain: :[font = input; Cclosed; preserveAspect; startGroup; ] InvLaPlace[ 1 / Sqrt[(s + a)(s - a)], s, t ] :[font = output; output; inactive; preserveAspect; endGroup; ] BesselJ[0, I*(a^2)^(1/2)*t]*CStep[t] ;[o] 2 BesselJ[0, I Sqrt[a ] t] CStep[t] :[font = input; Cclosed; preserveAspect; startGroup; ] InvLaPlace[ 1 / (s Sqrt[(s + a)(s - a)]), s, t ] :[font = output; output; inactive; preserveAspect; endGroup; ] t*CStep[t]*HypergeometricPFQ[{1/2}, {1, 3/2}, (a^2*t^2)/4] ;[o] 2 2 1 3 a t t CStep[t] HypergeometricPFQ[{-}, {1, -}, -----] 2 2 4 :[font = text; inactive; preserveAspect; endGroup; endGroup; endGroup; ] This is the integration of the Bessel function Io(- a t) with respect to t. :[font = section; inactive; Cclosed; preserveAspect; startGroup; ] Differential Equation With Zero-Valued Initial Conditions :[font = subsubsection; inactive; preserveAspect; ] Example :[font = text; inactive; preserveAspect; ] The first example is a second-order linear constant-coefficient differential equation whose initial conditions are zero: y'(0) = y(0) = 0. The Mathematica object LSolve requires two arguments: the differential equation to be solved and what to solve for. :[font = input; Cclosed; preserveAspect; startGroup; ] LSolve[ y''[t] + 3/2 y'[t] + 1/2 y[t] == Exp[a t] CStep[t], y[t] ] :[font = print; inactive; preserveAspect; ] Solving for y[t] in the differential equation y[t] 3 y'[t] a t ---- + ------- + y''[t] = E CStep[t] 2 2 subject to the initial conditions being zero. After taking the Laplace transform of both sides and solving for the transform of y[t]: 1 ---------------------- 1 3 s 2 (- + --- + s ) (s - a) 2 2 Inverse transforming this gives y[t]: :[font = output; output; inactive; preserveAspect; endGroup; ] (2*(1 + 2*a - 2*E^(t/2) - 2*a*E^(t/2) + E^(t + a*t))*CStep[t])/ ((1 + 3*a + 2*a^2)*E^t) ;[o] t/2 t/2 t + a t 2 (1 + 2 a - 2 E - 2 a E + E ) CStep[t] --------------------------------------------------- 2 t (1 + 3 a + 2 a ) E :[font = text; inactive; preserveAspect; ] Implied here is that we are looking for the solution to the differential equation when t > 0. Therefore, we can drop the continuous-time step functions since they are 1 for t > 0. :[font = subsubsection; inactive; Cclosed; preserveAspect; startGroup; ] Verifying a Solution :[font = text; inactive; preserveAspect; ] We can now use Mathematica to verify the solution, which we assign to the function ysol: :[font = input; initialization; Cclosed; preserveAspect; startGroup; ] *) ysol = 4 Exp[-t/2] / (-1 - 2 a) - 2 Exp[-t] / (-1 - a) - 2 Exp[a t] / (-1 - 3 a - 2 a^2 ) (* :[font = output; output; inactive; preserveAspect; endGroup; ] -2/((-1 - a)*E^t) + 4/((-1 - 2*a)*E^(t/2)) - (2*E^(a*t))/(-1 - 3*a - 2*a^2) ;[o] a t -2 4 2 E ----------- + --------------- - --------------- t t/2 2 (-1 - a) E (-1 - 2 a) E -1 - 3 a - 2 a :[font = text; inactive; preserveAspect; ] We can now check to make sure that the initial conditions are valid. First, we check to see if y(0+) = 0: :[font = input; Cclosed; preserveAspect; startGroup; ] ysol /. t -> 0 :[font = output; output; inactive; preserveAspect; endGroup; ] 4/(-1 - 2*a) - 2/(-1 - a) - 2/(-1 - 3*a - 2*a^2) ;[o] 4 2 2 -------- - ------ - --------------- -1 - 2 a -1 - a 2 -1 - 3 a - 2 a :[font = text; inactive; preserveAspect; ] This may not look like zero but it actually is: :[font = input; Cclosed; preserveAspect; startGroup; ] Simplify[ ysol /. t -> 0 ] :[font = output; output; inactive; preserveAspect; endGroup; ] 0 ;[o] 0 :[font = text; inactive; preserveAspect; ] Second, we can check to make sure that y'(0+) equals zero: :[font = input; initialization; Cclosed; preserveAspect; startGroup; ] *) Simplify[ D[ ysol, t ] /. t -> 0 ] (* :[font = output; output; inactive; preserveAspect; endGroup; ] 0 ;[o] 0 :[font = text; inactive; preserveAspect; ] Next, we can try to verify that the solution satisfies the differential equation: :[font = input; Cclosed; preserveAspect; startGroup; ] ysolprime = D[ ysol, t]; ysoldblprime = D[ ysolprime, t]; Simplify[ ysoldblprime + 3/2 ysolprime + 1/2 ysol ] :[font = output; output; inactive; preserveAspect; endGroup; endGroup; ] E^(a*t) ;[o] a t E :[font = subsubsection; inactive; Cclosed; preserveAspect; startGroup; ] Analyzing a Solution :[font = text; inactive; preserveAspect; ] Now that we shown that the solution is correct, we can analyze the solution. First, there are certain values of the free parameter a which yield an unbounded (and hence invalid) solution. This occurs when any of the denominator terms become zero, which happens when a = -1/2 and when a = -1. This can be seen from inspection, but Mathematica can determine these values in the general case. First, we convert the solution from its form of Plus[term1, term2, term3] to a list of the form List[term1, term2, term3] by using Apply and then solve the cases where each denominator is zero using Solve: :[font = input; Cclosed; preserveAspect; startGroup; ] Map[ Solve[Denominator[#1] == 0, a]&, Apply[List, ysol] ] :[font = output; output; inactive; preserveAspect; endGroup; endGroup; ] {{{a -> -1}}, {{a -> -1/2}}, {{a -> -1}, {a -> -1/2}}} ;[o] 1 1 {{{a -> -1}}, {{a -> -(-)}}, {{a -> -1}, {a -> -(-)}}} 2 2 :[font = subsubsection; inactive; Cclosed; preserveAspect; startGroup; ] Interpreting a Solution :[font = text; inactive; preserveAspect; ] In this case, ysol is assigned to the solution of the differential equation automatically by the notebook. To plot the solution, then, we simplify plot ysol for different values of a: :[font = input; Cclosed; preserveAspect; startGroup; ] Plot3D[ ysol, {t, 0, 2}, {a, -1.2, -2}, AxesLabel->{"t", "a", "y(t)"} ] :[font = postscript; PostScript; formatAsPostScript; output; inactive; preserveAspect; pictureLeft = 17; pictureWidth = 389; pictureHeight = 239; ] %! %%Creator: Mathematica %%AspectRatio: 0.82055 MathPictureStart /Courier findfont 10 scalefont setfont % Scaling calculations 0.024936 0.99742 -0.039634 0.99742 [ [(0)] 0.05113 0.25884 1 0.933946 Msboxa [(0.5)] 0.1926 0.20316 0.96648 1 Msboxa [(1)] 0.34275 0.1441 0.862234 1 Msboxa [(1.5)] 0.50241 0.08133 0.757988 1 Msboxa [(2)] 0.6725 0.0145 0.653742 1 Msboxa [(t)] 0.30204 0.09689 0.862234 1 Msboxa [(-2)] 0.69093 0.02039 -1 0.391569 Msboxa [(-1.8)] 0.76901 0.13994 -1 0.364128 Msboxa [(-1.6)] 0.83872 0.24668 -1 0.340282 Msboxa [(-1.4)] 0.90133 0.34257 -1 0.319367 Msboxa [(-1.2)] 0.95788 0.42917 -1 0.300874 Msboxa [(a)] 0.89773 0.2266 -1 0.340282 Msboxa [(0)] 0.04785 0.27682 1 -0.390596 Msboxa [(0.1)] 0.03855 0.33507 1 -0.379075 Msboxa [(0.2)] 0.02888 0.39568 1 -0.367037 Msboxa [(0.3)] 0.01881 0.45881 1 -0.354448 Msboxa [(y\(t\))] -0.02691 0.40064 1 -0.370357 Msboxa [ 0 0 0 0 ] [ 1 0.820555 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath %%Object: SurfaceGraphics [ ] 0 setdash 0 setgray gsave gsave 0.002 setlinewidth 0.06024 0.26735 moveto 0.67932 0.02494 lineto stroke grestore gsave 0.002 setlinewidth 0.06024 0.26735 moveto 0.0648 0.2716 lineto stroke grestore [(0)] 0.05113 0.25884 1 0.933946 Mshowa gsave 0.002 setlinewidth 0.20126 0.21213 moveto 0.2056 0.21661 lineto stroke grestore [(0.5)] 0.1926 0.20316 0.96648 1 Mshowa gsave 0.002 setlinewidth 0.35089 0.15354 moveto 0.35496 0.15826 lineto stroke grestore [(1)] 0.34275 0.1441 0.862234 1 Mshowa gsave 0.002 setlinewidth 0.50994 0.09126 moveto 0.5137 0.09623 lineto stroke grestore [(1.5)] 0.50241 0.08133 0.757988 1 Mshowa gsave 0.002 setlinewidth 0.67932 0.02494 moveto 0.68274 0.03015 lineto stroke grestore [(2)] 0.6725 0.0145 0.653742 1 Mshowa gsave 0.001 setlinewidth 0.08779 0.25656 moveto 0.0905 0.25914 lineto stroke grestore gsave 0.001 setlinewidth 0.11567 0.24565 moveto 0.11835 0.24825 lineto stroke grestore gsave 0.001 setlinewidth 0.14386 0.2346 moveto 0.14652 0.23724 lineto stroke grestore gsave 0.001 setlinewidth 0.17239 0.22343 moveto 0.17502 0.22609 lineto stroke grestore gsave 0.001 setlinewidth 0.23048 0.20069 moveto 0.23305 0.20341 lineto stroke grestore gsave 0.001 setlinewidth 0.26004 0.18911 moveto 0.26258 0.19186 lineto stroke grestore gsave 0.001 setlinewidth 0.28996 0.1774 moveto 0.29247 0.18017 lineto stroke grestore gsave 0.001 setlinewidth 0.32024 0.16554 moveto 0.32272 0.16835 lineto stroke grestore gsave 0.001 setlinewidth 0.38192 0.14139 moveto 0.38433 0.14425 lineto stroke grestore gsave 0.001 setlinewidth 0.41333 0.12909 moveto 0.4157 0.13198 lineto stroke grestore gsave 0.001 setlinewidth 0.44513 0.11664 moveto 0.44747 0.11956 lineto stroke grestore gsave 0.001 setlinewidth 0.47733 0.10403 moveto 0.47963 0.10698 lineto stroke grestore gsave 0.001 setlinewidth 0.54296 0.07833 moveto 0.54518 0.08134 lineto stroke grestore gsave 0.001 setlinewidth 0.5764 0.06524 moveto 0.57857 0.06828 lineto stroke grestore gsave 0.001 setlinewidth 0.61027 0.05198 moveto 0.6124 0.05505 lineto stroke grestore gsave 0.001 setlinewidth 0.64457 0.03854 moveto 0.64666 0.04164 lineto stroke grestore [(t)] 0.30204 0.09689 0.862234 1 Mshowa grestore gsave gsave 0.002 setlinewidth 0.67932 0.02494 moveto 0.94594 0.43277 lineto stroke grestore gsave 0.002 setlinewidth 0.67932 0.02494 moveto 0.67352 0.02721 lineto stroke grestore [(-2)] 0.69093 0.02039 -1 0.391569 Mshowa gsave 0.002 setlinewidth 0.7573 0.14421 moveto 0.75144 0.14634 lineto stroke grestore [(-1.8)] 0.76901 0.13994 -1 0.364128 Mshowa gsave 0.002 setlinewidth 0.82692 0.2507 moveto 0.82101 0.25271 lineto stroke grestore [(-1.6)] 0.83872 0.24668 -1 0.340282 Mshowa gsave 0.002 setlinewidth 0.88945 0.34636 moveto 0.88352 0.34826 lineto stroke grestore [(-1.4)] 0.90133 0.34257 -1 0.319367 Mshowa gsave 0.002 setlinewidth 0.94594 0.43277 moveto 0.93997 0.43456 lineto stroke grestore [(-1.2)] 0.95788 0.42917 -1 0.300874 Mshowa gsave 0.001 setlinewidth 0.69566 0.04992 moveto 0.69217 0.05127 lineto stroke grestore gsave 0.001 setlinewidth 0.71161 0.07432 moveto 0.70811 0.07565 lineto stroke grestore gsave 0.001 setlinewidth 0.72719 0.09816 moveto 0.72369 0.09947 lineto stroke grestore gsave 0.001 setlinewidth 0.74242 0.12145 moveto 0.73891 0.12274 lineto stroke grestore gsave 0.001 setlinewidth 0.77184 0.16646 moveto 0.76832 0.16772 lineto stroke grestore gsave 0.001 setlinewidth 0.78607 0.18822 moveto 0.78254 0.18947 lineto stroke grestore gsave 0.001 setlinewidth 0.79998 0.2095 moveto 0.79645 0.21074 lineto stroke grestore gsave 0.001 setlinewidth 0.81359 0.23032 moveto 0.81006 0.23154 lineto stroke grestore gsave 0.001 setlinewidth 0.83995 0.27064 moveto 0.83641 0.27183 lineto stroke grestore gsave 0.001 setlinewidth 0.85272 0.29017 moveto 0.84917 0.29135 lineto stroke grestore gsave 0.001 setlinewidth 0.86522 0.30929 moveto 0.86166 0.31045 lineto stroke grestore gsave 0.001 setlinewidth 0.87746 0.32802 moveto 0.8739 0.32917 lineto stroke grestore gsave 0.001 setlinewidth 0.90121 0.36434 moveto 0.89764 0.36546 lineto stroke grestore gsave 0.001 setlinewidth 0.91272 0.38196 moveto 0.90915 0.38307 lineto stroke grestore gsave 0.001 setlinewidth 0.92402 0.39923 moveto 0.92044 0.40033 lineto stroke grestore gsave 0.001 setlinewidth 0.93508 0.41616 moveto 0.93151 0.41725 lineto stroke grestore [(a)] 0.89773 0.2266 -1 0.340282 Mshowa grestore gsave gsave 0.002 setlinewidth 0.06024 0.26735 moveto 0.02494 0.49015 lineto stroke grestore gsave 0.002 setlinewidth 0.05946 0.27229 moveto 0.06527 0.27002 lineto stroke grestore [(0)] 0.04785 0.27682 1 -0.390596 Mshowa gsave 0.002 setlinewidth 0.05021 0.33065 moveto 0.05604 0.32844 lineto stroke grestore [(0.1)] 0.03855 0.33507 1 -0.379075 Mshowa gsave 0.002 setlinewidth 0.04059 0.39139 moveto 0.04644 0.38924 lineto stroke grestore [(0.2)] 0.02888 0.39568 1 -0.367037 Mshowa gsave 0.002 setlinewidth 0.03056 0.45465 moveto 0.03644 0.45256 lineto stroke grestore [(0.3)] 0.01881 0.45881 1 -0.354448 Mshowa gsave 0.001 setlinewidth 0.05764 0.28378 moveto 0.06113 0.28242 lineto stroke grestore gsave 0.001 setlinewidth 0.0558 0.29536 moveto 0.05929 0.29401 lineto stroke grestore gsave 0.001 setlinewidth 0.05395 0.30703 moveto 0.05745 0.30569 lineto stroke grestore gsave 0.001 setlinewidth 0.05209 0.31879 moveto 0.05558 0.31746 lineto stroke grestore gsave 0.001 setlinewidth 0.04832 0.3426 moveto 0.05182 0.34128 lineto stroke grestore gsave 0.001 setlinewidth 0.04641 0.35465 moveto 0.04991 0.35334 lineto stroke grestore gsave 0.001 setlinewidth 0.04448 0.3668 moveto 0.04799 0.36549 lineto stroke grestore gsave 0.001 setlinewidth 0.04254 0.37904 moveto 0.04605 0.37775 lineto stroke grestore gsave 0.001 setlinewidth 0.03861 0.40383 moveto 0.04213 0.40255 lineto stroke grestore gsave 0.001 setlinewidth 0.03663 0.41638 moveto 0.04014 0.41511 lineto stroke grestore gsave 0.001 setlinewidth 0.03462 0.42903 moveto 0.03814 0.42776 lineto stroke grestore gsave 0.001 setlinewidth 0.0326 0.44178 moveto 0.03612 0.44053 lineto stroke grestore gsave 0.001 setlinewidth 0.02851 0.46761 moveto 0.03203 0.46637 lineto stroke grestore gsave 0.001 setlinewidth 0.02643 0.48069 moveto 0.02997 0.47946 lineto stroke grestore [(y\(t\))] -0.02691 0.40064 1 -0.370357 Mshowa grestore 0 0 moveto 1 0 lineto 1 0.82055 lineto 0 0.82055 lineto closepath clip newpath gsave 0.002 setlinewidth 0.06024 0.26735 moveto 0.02494 0.49015 lineto stroke 0.02494 0.49015 moveto 0.40296 0.79562 lineto stroke 0.40296 0.79562 moveto 0.41001 0.59401 lineto stroke 0.41001 0.59401 moveto 0.06024 0.26735 lineto stroke 0.67932 0.02494 moveto 0.94594 0.43277 lineto stroke 0.94594 0.43277 moveto 0.97506 0.64585 lineto stroke 0.97506 0.64585 moveto 0.69286 0.25814 lineto stroke 0.69286 0.25814 moveto 0.67932 0.02494 lineto stroke 0.06024 0.26735 moveto 0.02494 0.49015 lineto stroke 0.02494 0.49015 moveto 0.69286 0.25814 lineto stroke 0.69286 0.25814 moveto 0.67932 0.02494 lineto stroke 0.67932 0.02494 moveto 0.06024 0.26735 lineto stroke 0.41001 0.59401 moveto 0.94594 0.43277 lineto stroke 0.94594 0.43277 moveto 0.97506 0.64585 lineto stroke 0.97506 0.64585 moveto 0.40296 0.79562 lineto stroke 0.40296 0.79562 moveto 0.41001 0.59401 lineto stroke grestore gsave 0.607 0.726 0.929 setrgbcolor 0.0015 setlinewidth 0.38895 0.57908 0.40985 0.59854 0.44467 0.59279 0.42404 0.57308 Metetra 0.489 0.682 0.952 setrgbcolor 0.42404 0.57308 0.44467 0.59279 0.47997 0.59421 0.45958 0.57423 Metetra 0.396 0.638 0.953 setrgbcolor 0.45958 0.57423 0.47997 0.59421 0.51602 0.60018 0.49585 0.57985 Metetra 0.344 0.61 0.948 setrgbcolor 0.49585 0.57985 0.51602 0.60018 0.55298 0.60872 0.53303 0.58795 Metetra 0.331 0.599 0.945 setrgbcolor 0.53303 0.58795 0.55298 0.60872 0.59094 0.61833 0.57121 0.59701 Metetra 0.346 0.603 0.944 setrgbcolor 0.57121 0.59701 0.59094 0.61833 0.62992 0.62788 0.61043 0.6059 Metetra 0.379 0.616 0.944 setrgbcolor 0.61043 0.6059 0.62992 0.62788 0.66992 0.63653 0.65068 0.61379 Metetra 0.419 0.631 0.942 setrgbcolor 0.65068 0.61379 0.66992 0.63653 0.71091 0.64366 0.69192 0.62008 Metetra 0.461 0.645 0.938 setrgbcolor 0.69192 0.62008 0.71091 0.64366 0.75283 0.64887 0.73412 0.62439 Metetra 0.499 0.658 0.931 setrgbcolor 0.73412 0.62439 0.75283 0.64887 0.79563 0.65187 0.77721 0.62646 Metetra 0.534 0.669 0.924 setrgbcolor 0.77721 0.62646 0.79563 0.65187 0.83925 0.65255 0.82112 0.62617 Metetra 0.563 0.677 0.915 setrgbcolor 0.82112 0.62617 0.83925 0.65255 0.8836 0.65083 0.8658 0.62349 Metetra 0.588 0.683 0.907 setrgbcolor 0.8658 0.62349 0.8836 0.65083 0.92865 0.64677 0.91118 0.61848 Metetra 0.609 0.688 0.899 setrgbcolor 0.91118 0.61848 0.92865 0.64677 0.97432 0.64043 0.9572 0.61121 Metetra 0.607 0.726 0.929 setrgbcolor 0.36752 0.55912 0.38895 0.57908 0.42404 0.57308 0.40288 0.55286 Metetra 0.49 0.682 0.951 setrgbcolor 0.40288 0.55286 0.42404 0.57308 0.45958 0.57423 0.43865 0.55373 Metetra 0.4 0.64 0.953 setrgbcolor 0.43865 0.55373 0.45958 0.57423 0.49585 0.57985 0.47515 0.559 Metetra 0.35 0.613 0.949 setrgbcolor 0.47515 0.559 0.49585 0.57985 0.53303 0.58795 0.51255 0.56664 Metetra 0.34 0.604 0.946 setrgbcolor 0.51255 0.56664 0.53303 0.58795 0.57121 0.59701 0.55096 0.57514 Metetra 0.357 0.609 0.945 setrgbcolor 0.55096 0.57514 0.57121 0.59701 0.61043 0.6059 0.59042 0.58336 Metetra 0.39 0.621 0.945 setrgbcolor 0.59042 0.58336 0.61043 0.6059 0.65068 0.61379 0.63092 0.5905 Metetra 0.429 0.636 0.942 setrgbcolor 0.63092 0.5905 0.65068 0.61379 0.69192 0.62008 0.67244 0.59596 Metetra 0.47 0.651 0.938 setrgbcolor 0.67244 0.59596 0.69192 0.62008 0.73412 0.62439 0.71492 0.59938 Metetra 0.507 0.663 0.932 setrgbcolor 0.71492 0.59938 0.73412 0.62439 0.77721 0.62646 0.75831 0.60053 Metetra 0.541 0.673 0.924 setrgbcolor 0.75831 0.60053 0.77721 0.62646 0.82112 0.62617 0.80254 0.5993 Metetra 0.569 0.681 0.916 setrgbcolor 0.80254 0.5993 0.82112 0.62617 0.8658 0.62349 0.84755 0.59568 Metetra 0.593 0.688 0.908 setrgbcolor 0.84755 0.59568 0.8658 0.62349 0.91118 0.61848 0.89328 0.58974 Metetra 0.613 0.693 0.9 setrgbcolor 0.89328 0.58974 0.91118 0.61848 0.9572 0.61121 0.93968 0.58158 Metetra 0.607 0.726 0.929 setrgbcolor 0.34552 0.53864 0.36752 0.55912 0.40288 0.55286 0.38116 0.53211 Metetra 0.492 0.683 0.951 setrgbcolor 0.38116 0.53211 0.40288 0.55286 0.43865 0.55373 0.41717 0.53268 Metetra 0.404 0.642 0.953 setrgbcolor 0.41717 0.53268 0.43865 0.55373 0.47515 0.559 0.45389 0.53758 Metetra 0.357 0.617 0.949 setrgbcolor 0.45389 0.53758 0.47515 0.559 0.51255 0.56664 0.49152 0.54476 Metetra 0.348 0.609 0.947 setrgbcolor 0.49152 0.54476 0.51255 0.56664 0.55096 0.57514 0.53016 0.55269 Metetra 0.366 0.615 0.946 setrgbcolor 0.53016 0.55269 0.55096 0.57514 0.59042 0.58336 0.56986 0.56025 Metetra 0.4 0.627 0.945 setrgbcolor 0.56986 0.56025 0.59042 0.58336 0.63092 0.5905 0.61063 0.56663 Metetra 0.439 0.642 0.943 setrgbcolor 0.61063 0.56663 0.63092 0.5905 0.67244 0.59596 0.65243 0.57127 Metetra 0.478 0.656 0.938 setrgbcolor 0.65243 0.57127 0.67244 0.59596 0.71492 0.59938 0.69521 0.57381 Metetra 0.515 0.668 0.932 setrgbcolor 0.69521 0.57381 0.71492 0.59938 0.75831 0.60053 0.73891 0.57405 Metetra 0.547 0.678 0.924 setrgbcolor 0.73891 0.57405 0.75831 0.60053 0.80254 0.5993 0.78348 0.5719 Metetra 0.575 0.686 0.916 setrgbcolor 0.78348 0.5719 0.80254 0.5993 0.84755 0.59568 0.82884 0.56736 Metetra 0.598 0.692 0.908 setrgbcolor 0.82884 0.56736 0.84755 0.59568 0.89328 0.58974 0.87494 0.56052 Metetra 0.617 0.697 0.901 setrgbcolor 0.87494 0.56052 0.89328 0.58974 0.93968 0.58158 0.92173 0.55148 Metetra 0.607 0.726 0.929 setrgbcolor 0.32295 0.51762 0.34552 0.53864 0.38116 0.53211 0.35886 0.51081 Metetra 0.493 0.683 0.951 setrgbcolor 0.35886 0.51081 0.38116 0.53211 0.41717 0.53268 0.39512 0.51107 Metetra 0.407 0.644 0.953 setrgbcolor 0.39512 0.51107 0.41717 0.53268 0.45389 0.53758 0.43206 0.5156 Metetra 0.363 0.62 0.95 setrgbcolor 0.43206 0.5156 0.45389 0.53758 0.49152 0.54476 0.46991 0.5223 Metetra 0.357 0.614 0.948 setrgbcolor 0.46991 0.5223 0.49152 0.54476 0.53016 0.55269 0.50879 0.52965 Metetra 0.376 0.62 0.947 setrgbcolor 0.50879 0.52965 0.53016 0.55269 0.56986 0.56025 0.54875 0.53653 Metetra 0.409 0.632 0.946 setrgbcolor 0.54875 0.53653 0.56986 0.56025 0.61063 0.56663 0.58978 0.54215 Metetra 0.448 0.647 0.943 setrgbcolor 0.58978 0.54215 0.61063 0.56663 0.65243 0.57127 0.63187 0.54597 Metetra 0.486 0.66 0.938 setrgbcolor 0.63187 0.54597 0.65243 0.57127 0.69521 0.57381 0.67496 0.54764 Metetra 0.522 0.672 0.932 setrgbcolor 0.67496 0.54764 0.69521 0.57381 0.73891 0.57405 0.71899 0.54698 Metetra 0.553 0.682 0.924 setrgbcolor 0.71899 0.54698 0.73891 0.57405 0.78348 0.5719 0.76391 0.54393 Metetra 0.58 0.69 0.916 setrgbcolor 0.76391 0.54393 0.78348 0.5719 0.82884 0.56736 0.80964 0.53849 Metetra 0.602 0.696 0.909 setrgbcolor 0.80964 0.53849 0.82884 0.56736 0.87494 0.56052 0.85613 0.53076 Metetra 0.621 0.701 0.902 setrgbcolor 0.85613 0.53076 0.87494 0.56052 0.92173 0.55148 0.90332 0.52087 Metetra 0.607 0.726 0.929 setrgbcolor 0.29977 0.49604 0.32295 0.51762 0.35886 0.51081 0.33596 0.48893 Metetra 0.495 0.684 0.951 setrgbcolor 0.33596 0.48893 0.35886 0.51081 0.39512 0.51107 0.37246 0.48888 Metetra 0.411 0.646 0.954 setrgbcolor 0.37246 0.48888 0.39512 0.51107 0.43206 0.5156 0.40963 0.49301 Metetra 0.37 0.623 0.95 setrgbcolor 0.40963 0.49301 0.43206 0.5156 0.46991 0.5223 0.44771 0.49922 Metetra 0.365 0.618 0.948 setrgbcolor 0.44771 0.49922 0.46991 0.5223 0.50879 0.52965 0.48683 0.50599 Metetra 0.385 0.624 0.948 setrgbcolor 0.48683 0.50599 0.50879 0.52965 0.54875 0.53653 0.52704 0.51219 Metetra 0.418 0.637 0.946 setrgbcolor 0.52704 0.51219 0.54875 0.53653 0.58978 0.54215 0.56835 0.51705 Metetra 0.456 0.651 0.943 setrgbcolor 0.56835 0.51705 0.58978 0.54215 0.63187 0.54597 0.61074 0.52004 Metetra 0.494 0.665 0.938 setrgbcolor 0.61074 0.52004 0.63187 0.54597 0.67496 0.54764 0.65415 0.52085 Metetra 0.529 0.676 0.932 setrgbcolor 0.65415 0.52085 0.67496 0.54764 0.71899 0.54698 0.69853 0.5193 Metetra 0.559 0.686 0.924 setrgbcolor 0.69853 0.5193 0.71899 0.54698 0.76391 0.54393 0.7438 0.51535 Metetra 0.585 0.693 0.917 setrgbcolor 0.7438 0.51535 0.76391 0.54393 0.80964 0.53849 0.78992 0.50903 Metetra 0.606 0.699 0.909 setrgbcolor 0.78992 0.50903 0.80964 0.53849 0.85613 0.53076 0.83682 0.50043 Metetra 0.624 0.704 0.903 setrgbcolor 0.83682 0.50043 0.85613 0.53076 0.90332 0.52087 0.88444 0.4897 Metetra 0.608 0.726 0.929 setrgbcolor 0.27596 0.47387 0.29977 0.49604 0.33596 0.48893 0.31244 0.46645 Metetra 0.496 0.685 0.951 setrgbcolor 0.31244 0.46645 0.33596 0.48893 0.37246 0.48888 0.34917 0.46607 Metetra 0.415 0.647 0.954 setrgbcolor 0.34917 0.46607 0.37246 0.48888 0.40963 0.49301 0.38657 0.46979 Metetra 0.376 0.626 0.951 setrgbcolor 0.38657 0.46979 0.40963 0.49301 0.44771 0.49922 0.42488 0.47551 Metetra 0.373 0.622 0.949 setrgbcolor 0.42488 0.47551 0.44771 0.49922 0.48683 0.50599 0.46424 0.48167 Metetra 0.393 0.629 0.948 setrgbcolor 0.46424 0.48167 0.48683 0.50599 0.52704 0.51219 0.50472 0.48719 Metetra 0.427 0.642 0.947 setrgbcolor 0.50472 0.48719 0.52704 0.51219 0.56835 0.51705 0.54632 0.49128 Metetra 0.464 0.656 0.943 setrgbcolor 0.54632 0.49128 0.56835 0.51705 0.61074 0.52004 0.58901 0.49346 Metetra 0.501 0.669 0.938 setrgbcolor 0.58901 0.49346 0.61074 0.52004 0.65415 0.52085 0.63275 0.4934 Metetra 0.535 0.68 0.932 setrgbcolor 0.63275 0.4934 0.65415 0.52085 0.69853 0.5193 0.67748 0.49097 Metetra 0.564 0.689 0.924 setrgbcolor 0.67748 0.49097 0.69853 0.5193 0.7438 0.51535 0.72314 0.48613 Metetra 0.589 0.697 0.917 setrgbcolor 0.72314 0.48613 0.7438 0.51535 0.78992 0.50903 0.76966 0.47893 Metetra 0.61 0.703 0.91 setrgbcolor 0.76966 0.47893 0.78992 0.50903 0.83682 0.50043 0.81698 0.46947 Metetra 0.627 0.707 0.903 setrgbcolor 0.81698 0.46947 0.83682 0.50043 0.88444 0.4897 0.86506 0.45792 Metetra 0.608 0.726 0.929 setrgbcolor 0.2515 0.4511 0.27596 0.47387 0.31244 0.46645 0.28826 0.44336 Metetra 0.498 0.685 0.951 setrgbcolor 0.28826 0.44336 0.31244 0.46645 0.34917 0.46607 0.32524 0.44262 Metetra 0.419 0.649 0.954 setrgbcolor 0.32524 0.44262 0.34917 0.46607 0.38657 0.46979 0.36286 0.44593 Metetra 0.382 0.629 0.951 setrgbcolor 0.36286 0.44593 0.38657 0.46979 0.42488 0.47551 0.40141 0.45113 Metetra 0.38 0.626 0.95 setrgbcolor 0.40141 0.45113 0.42488 0.47551 0.46424 0.48167 0.44101 0.45668 Metetra 0.402 0.633 0.949 setrgbcolor 0.44101 0.45668 0.46424 0.48167 0.50472 0.48719 0.48176 0.4615 Metetra 0.435 0.646 0.947 setrgbcolor 0.48176 0.4615 0.50472 0.48719 0.54632 0.49128 0.52365 0.46482 Metetra 0.472 0.66 0.943 setrgbcolor 0.52365 0.46482 0.54632 0.49128 0.58901 0.49346 0.56666 0.46617 Metetra 0.508 0.673 0.938 setrgbcolor 0.56666 0.46617 0.58901 0.49346 0.63275 0.4934 0.61074 0.46526 Metetra 0.541 0.684 0.932 setrgbcolor 0.61074 0.46526 0.63275 0.4934 0.67748 0.49097 0.65584 0.46195 Metetra 0.569 0.693 0.924 setrgbcolor 0.65584 0.46195 0.67748 0.49097 0.72314 0.48613 0.70189 0.45623 Metetra 0.593 0.7 0.917 setrgbcolor 0.70189 0.45623 0.72314 0.48613 0.76966 0.47893 0.74883 0.44815 Metetra 0.614 0.706 0.91 setrgbcolor 0.74883 0.44815 0.76966 0.47893 0.81698 0.46947 0.7966 0.43785 Metetra 0.63 0.71 0.904 setrgbcolor 0.7966 0.43785 0.81698 0.46947 0.86506 0.45792 0.84514 0.42547 Metetra 0.608 0.726 0.929 setrgbcolor 0.22636 0.42769 0.2515 0.4511 0.28826 0.44336 0.26341 0.41961 Metetra 0.499 0.686 0.951 setrgbcolor 0.26341 0.41961 0.28826 0.44336 0.32524 0.44262 0.30062 0.41851 Metetra 0.422 0.651 0.954 setrgbcolor 0.30062 0.41851 0.32524 0.44262 0.36286 0.44593 0.33848 0.42138 Metetra 0.387 0.632 0.952 setrgbcolor 0.33848 0.42138 0.36286 0.44593 0.40141 0.45113 0.37725 0.42605 Metetra 0.387 0.63 0.95 setrgbcolor 0.37725 0.42605 0.40141 0.45113 0.44101 0.45668 0.41711 0.43098 Metetra 0.41 0.638 0.949 setrgbcolor 0.41711 0.43098 0.44101 0.45668 0.48176 0.4615 0.45812 0.43509 Metetra 0.443 0.65 0.947 setrgbcolor 0.45812 0.43509 0.48176 0.4615 0.52365 0.46482 0.50031 0.43764 Metetra 0.479 0.664 0.943 setrgbcolor 0.50031 0.43764 0.52365 0.46482 0.56666 0.46617 0.54365 0.43816 Metetra 0.515 0.676 0.938 setrgbcolor 0.54365 0.43816 0.56666 0.46617 0.61074 0.46526 0.58809 0.43638 Metetra 0.546 0.687 0.931 setrgbcolor 0.58809 0.43638 0.61074 0.46526 0.65584 0.46195 0.63357 0.4322 Metetra 0.574 0.696 0.924 setrgbcolor 0.63357 0.4322 0.65584 0.46195 0.70189 0.45623 0.68002 0.4256 Metetra 0.597 0.703 0.917 setrgbcolor 0.68002 0.4256 0.70189 0.45623 0.74883 0.44815 0.7274 0.41666 Metetra 0.617 0.708 0.911 setrgbcolor 0.7274 0.41666 0.74883 0.44815 0.7966 0.43785 0.77563 0.40551 Metetra 0.633 0.713 0.905 setrgbcolor 0.77563 0.40551 0.7966 0.43785 0.84514 0.42547 0.82466 0.39231 Metetra 0.608 0.726 0.929 setrgbcolor 0.20051 0.40362 0.22636 0.42769 0.26341 0.41961 0.23784 0.39518 Metetra 0.5 0.686 0.95 setrgbcolor 0.23784 0.39518 0.26341 0.41961 0.30062 0.41851 0.2753 0.39371 Metetra 0.426 0.652 0.954 setrgbcolor 0.2753 0.39371 0.30062 0.41851 0.33848 0.42138 0.31338 0.39612 Metetra 0.393 0.635 0.952 setrgbcolor 0.31338 0.39612 0.33848 0.42138 0.37725 0.42605 0.35239 0.40025 Metetra 0.394 0.633 0.95 setrgbcolor 0.35239 0.40025 0.37725 0.42605 0.41711 0.43098 0.3925 0.40454 Metetra 0.417 0.641 0.949 setrgbcolor 0.3925 0.40454 0.41711 0.43098 0.45812 0.43509 0.43379 0.40793 Metetra 0.45 0.654 0.947 setrgbcolor 0.43379 0.40793 0.45812 0.43509 0.50031 0.43764 0.47628 0.40969 Metetra 0.486 0.668 0.943 setrgbcolor 0.47628 0.40969 0.50031 0.43764 0.54365 0.43816 0.51995 0.40937 Metetra 0.521 0.68 0.938 setrgbcolor 0.51995 0.40937 0.54365 0.43816 0.58809 0.43638 0.56476 0.40673 Metetra 0.552 0.69 0.931 setrgbcolor 0.56476 0.40673 0.58809 0.43638 0.63357 0.4322 0.61063 0.40167 Metetra 0.578 0.699 0.924 setrgbcolor 0.61063 0.40167 0.63357 0.4322 0.68002 0.4256 0.65751 0.39419 Metetra 0.601 0.706 0.917 setrgbcolor 0.65751 0.39419 0.68002 0.4256 0.7274 0.41666 0.70533 0.38439 Metetra 0.62 0.711 0.911 setrgbcolor 0.70533 0.38439 0.7274 0.41666 0.77563 0.40551 0.75404 0.3724 Metetra 0.635 0.716 0.905 setrgbcolor 0.75404 0.3724 0.77563 0.40551 0.82466 0.39231 0.80359 0.35839 Metetra 0.608 0.726 0.929 setrgbcolor 0.17391 0.37886 0.20051 0.40362 0.23784 0.39518 0.21154 0.37005 Metetra 0.502 0.687 0.95 setrgbcolor 0.21154 0.37005 0.23784 0.39518 0.2753 0.39371 0.24924 0.36818 Metetra 0.429 0.654 0.954 setrgbcolor 0.24924 0.36818 0.2753 0.39371 0.31338 0.39612 0.28755 0.37012 Metetra 0.398 0.638 0.952 setrgbcolor 0.28755 0.37012 0.31338 0.39612 0.35239 0.40025 0.32679 0.37369 Metetra 0.401 0.637 0.951 setrgbcolor 0.32679 0.37369 0.35239 0.40025 0.3925 0.40454 0.36715 0.37733 Metetra 0.424 0.645 0.95 setrgbcolor 0.36715 0.37733 0.3925 0.40454 0.43379 0.40793 0.40873 0.37998 Metetra 0.457 0.658 0.947 setrgbcolor 0.40873 0.37998 0.43379 0.40793 0.47628 0.40969 0.45153 0.38094 Metetra 0.493 0.671 0.943 setrgbcolor 0.45153 0.38094 0.47628 0.40969 0.51995 0.40937 0.49554 0.37979 Metetra 0.526 0.683 0.937 setrgbcolor 0.49554 0.37979 0.51995 0.40937 0.56476 0.40673 0.54072 0.37628 Metetra 0.556 0.693 0.931 setrgbcolor 0.54072 0.37628 0.56476 0.40673 0.61063 0.40167 0.587 0.37033 Metetra 0.582 0.701 0.924 setrgbcolor 0.587 0.37033 0.61063 0.40167 0.65751 0.39419 0.63431 0.36197 Metetra 0.604 0.708 0.917 setrgbcolor 0.63431 0.36197 0.65751 0.39419 0.70533 0.38439 0.68261 0.3513 Metetra 0.623 0.714 0.911 setrgbcolor 0.68261 0.3513 0.70533 0.38439 0.75404 0.3724 0.73181 0.33847 Metetra 0.638 0.718 0.906 setrgbcolor 0.73181 0.33847 0.75404 0.3724 0.80359 0.35839 0.78189 0.32364 Metetra 0.608 0.726 0.929 setrgbcolor 0.14655 0.35337 0.17391 0.37886 0.21154 0.37005 0.18446 0.34419 Metetra 0.503 0.687 0.95 setrgbcolor 0.18446 0.34419 0.21154 0.37005 0.24924 0.36818 0.2224 0.3419 Metetra 0.432 0.656 0.954 setrgbcolor 0.2224 0.3419 0.24924 0.36818 0.28755 0.37012 0.26094 0.34335 Metetra 0.404 0.64 0.952 setrgbcolor 0.26094 0.34335 0.28755 0.37012 0.32679 0.37369 0.30041 0.34633 Metetra 0.407 0.64 0.951 setrgbcolor 0.30041 0.34633 0.32679 0.37369 0.36715 0.37733 0.34103 0.3493 Metetra 0.431 0.649 0.95 setrgbcolor 0.34103 0.3493 0.36715 0.37733 0.40873 0.37998 0.38289 0.3512 Metetra 0.464 0.661 0.947 setrgbcolor 0.38289 0.3512 0.40873 0.37998 0.45153 0.38094 0.42601 0.35136 Metetra 0.499 0.674 0.943 setrgbcolor 0.42601 0.35136 0.45153 0.38094 0.49554 0.37979 0.47038 0.34935 Metetra 0.532 0.686 0.937 setrgbcolor 0.47038 0.34935 0.49554 0.37979 0.54072 0.37628 0.51594 0.34496 Metetra 0.561 0.696 0.931 setrgbcolor 0.51594 0.34496 0.54072 0.37628 0.587 0.37033 0.56264 0.33813 Metetra 0.586 0.704 0.924 setrgbcolor 0.56264 0.33813 0.587 0.37033 0.63431 0.36197 0.6104 0.32889 Metetra 0.608 0.711 0.917 setrgbcolor 0.6104 0.32889 0.63431 0.36197 0.68261 0.3513 0.65918 0.31734 Metetra 0.625 0.716 0.911 setrgbcolor 0.65918 0.31734 0.68261 0.3513 0.73181 0.33847 0.7089 0.30366 Metetra 0.64 0.72 0.906 setrgbcolor 0.7089 0.30366 0.73181 0.33847 0.78189 0.32364 0.75952 0.288 Metetra 0.609 0.726 0.928 setrgbcolor 0.11838 0.32714 0.14655 0.35337 0.18446 0.34419 0.15658 0.31755 Metetra 0.504 0.688 0.95 setrgbcolor 0.15658 0.31755 0.18446 0.34419 0.2224 0.3419 0.19476 0.31482 Metetra 0.436 0.657 0.954 setrgbcolor 0.19476 0.31482 0.2224 0.3419 0.26094 0.34335 0.23352 0.31576 Metetra 0.409 0.643 0.953 setrgbcolor 0.23352 0.31576 0.26094 0.34335 0.30041 0.34633 0.27323 0.31814 Metetra 0.414 0.643 0.951 setrgbcolor 0.27323 0.31814 0.30041 0.34633 0.34103 0.3493 0.31411 0.32042 Metetra 0.438 0.652 0.95 setrgbcolor 0.31411 0.32042 0.34103 0.3493 0.38289 0.3512 0.35626 0.32156 Metetra 0.471 0.665 0.947 setrgbcolor 0.35626 0.32156 0.38289 0.3512 0.42601 0.35136 0.3997 0.3209 Metetra 0.505 0.677 0.943 setrgbcolor 0.3997 0.3209 0.42601 0.35136 0.47038 0.34935 0.44442 0.31802 Metetra 0.537 0.689 0.937 setrgbcolor 0.44442 0.31802 0.47038 0.34935 0.51594 0.34496 0.49038 0.31274 Metetra 0.566 0.698 0.93 setrgbcolor 0.49038 0.31274 0.51594 0.34496 0.56264 0.33813 0.53751 0.30501 Metetra 0.59 0.706 0.924 setrgbcolor 0.53751 0.30501 0.56264 0.33813 0.6104 0.32889 0.58574 0.29488 Metetra 0.611 0.713 0.918 setrgbcolor 0.58574 0.29488 0.6104 0.32889 0.65918 0.31734 0.63501 0.28246 Metetra 0.628 0.718 0.912 setrgbcolor 0.63501 0.28246 0.65918 0.31734 0.7089 0.30366 0.68526 0.26791 Metetra 0.642 0.722 0.907 setrgbcolor 0.68526 0.26791 0.7089 0.30366 0.75952 0.288 0.73645 0.25142 Metetra 0.609 0.726 0.928 setrgbcolor 0.08936 0.30012 0.11838 0.32714 0.15658 0.31755 0.12786 0.29011 Metetra 0.506 0.689 0.95 setrgbcolor 0.12786 0.29011 0.15658 0.31755 0.19476 0.31482 0.16627 0.28692 Metetra 0.439 0.659 0.954 setrgbcolor 0.16627 0.28692 0.19476 0.31482 0.23352 0.31576 0.20525 0.28733 Metetra 0.414 0.645 0.953 setrgbcolor 0.20525 0.28733 0.23352 0.31576 0.27323 0.31814 0.2452 0.28909 Metetra 0.42 0.646 0.951 setrgbcolor 0.2452 0.28909 0.27323 0.31814 0.31411 0.32042 0.28634 0.29066 Metetra 0.444 0.655 0.95 setrgbcolor 0.28634 0.29066 0.31411 0.32042 0.35626 0.32156 0.32878 0.29101 Metetra 0.477 0.668 0.947 setrgbcolor 0.32878 0.29101 0.35626 0.32156 0.3997 0.3209 0.37255 0.28951 Metetra 0.51 0.68 0.942 setrgbcolor 0.37255 0.28951 0.3997 0.3209 0.44442 0.31802 0.41764 0.28575 Metetra 0.542 0.691 0.937 setrgbcolor 0.41764 0.28575 0.44442 0.31802 0.49038 0.31274 0.464 0.27957 Metetra 0.57 0.701 0.93 setrgbcolor 0.464 0.27957 0.49038 0.31274 0.53751 0.30501 0.51157 0.27094 Metetra 0.593 0.709 0.924 setrgbcolor 0.51157 0.27094 0.53751 0.30501 0.58574 0.29488 0.56028 0.2599 Metetra 0.613 0.715 0.918 setrgbcolor 0.56028 0.2599 0.58574 0.29488 0.63501 0.28246 0.61007 0.24659 Metetra 0.63 0.72 0.912 setrgbcolor 0.61007 0.24659 0.63501 0.28246 0.68526 0.26791 0.66087 0.23117 Metetra 0.643 0.724 0.907 setrgbcolor 0.66087 0.23117 0.68526 0.26791 0.73645 0.25142 0.71264 0.21383 Metetra 0.609 0.726 0.928 setrgbcolor 0.05946 0.27229 0.08936 0.30012 0.12786 0.29011 0.09825 0.26182 Metetra 0.507 0.689 0.95 setrgbcolor 0.09825 0.26182 0.12786 0.29011 0.16627 0.28692 0.1369 0.25816 Metetra 0.442 0.66 0.954 setrgbcolor 0.1369 0.25816 0.16627 0.28692 0.20525 0.28733 0.1761 0.25801 Metetra 0.418 0.648 0.953 setrgbcolor 0.1761 0.25801 0.20525 0.28733 0.2452 0.28909 0.21628 0.25912 Metetra 0.426 0.649 0.952 setrgbcolor 0.21628 0.25912 0.2452 0.28909 0.28634 0.29066 0.25768 0.25996 Metetra 0.45 0.658 0.95 setrgbcolor 0.25768 0.25996 0.28634 0.29066 0.32878 0.29101 0.30041 0.25951 Metetra 0.483 0.671 0.947 setrgbcolor 0.30041 0.25951 0.32878 0.29101 0.37255 0.28951 0.34452 0.25715 Metetra 0.516 0.683 0.942 setrgbcolor 0.34452 0.25715 0.37255 0.28951 0.41764 0.28575 0.38999 0.2525 Metetra 0.546 0.694 0.936 setrgbcolor 0.38999 0.2525 0.41764 0.28575 0.464 0.27957 0.43676 0.2454 Metetra 0.574 0.703 0.93 setrgbcolor 0.43676 0.2454 0.464 0.27957 0.51157 0.27094 0.48479 0.23584 Metetra 0.597 0.711 0.924 setrgbcolor 0.48479 0.23584 0.51157 0.27094 0.56028 0.2599 0.53399 0.22389 Metetra 0.616 0.717 0.918 setrgbcolor 0.53399 0.22389 0.56028 0.2599 0.61007 0.24659 0.58431 0.20967 Metetra 0.632 0.722 0.912 setrgbcolor 0.58431 0.20967 0.61007 0.24659 0.66087 0.23117 0.63567 0.19337 Metetra 0.645 0.726 0.907 setrgbcolor 0.63567 0.19337 0.66087 0.23117 0.71264 0.21383 0.68804 0.17516 Metetra grestore gsave 0.002 setlinewidth 0.67932 0.02494 moveto 0.94594 0.43277 lineto stroke 0.94594 0.43277 moveto 0.97506 0.64585 lineto stroke 0.97506 0.64585 moveto 0.69286 0.25814 lineto stroke 0.69286 0.25814 moveto 0.67932 0.02494 lineto stroke 0.06024 0.26735 moveto 0.02494 0.49015 lineto stroke 0.02494 0.49015 moveto 0.69286 0.25814 lineto stroke 0.69286 0.25814 moveto 0.67932 0.02494 lineto stroke 0.67932 0.02494 moveto 0.06024 0.26735 lineto stroke grestore gsave gsave 0.002 setlinewidth 0.06024 0.26735 moveto 0.67932 0.02494 lineto stroke grestore gsave 0.002 setlinewidth 0.06024 0.26735 moveto 0.0648 0.2716 lineto stroke grestore [(0)] 0.05113 0.25884 1 0.933946 Mshowa gsave 0.002 setlinewidth 0.20126 0.21213 moveto 0.2056 0.21661 lineto stroke grestore [(0.5)] 0.1926 0.20316 0.96648 1 Mshowa gsave 0.002 setlinewidth 0.35089 0.15354 moveto 0.35496 0.15826 lineto stroke grestore [(1)] 0.34275 0.1441 0.862234 1 Mshowa gsave 0.002 setlinewidth 0.50994 0.09126 moveto 0.5137 0.09623 lineto stroke grestore [(1.5)] 0.50241 0.08133 0.757988 1 Mshowa gsave 0.002 setlinewidth 0.67932 0.02494 moveto 0.68274 0.03015 lineto stroke grestore [(2)] 0.6725 0.0145 0.653742 1 Mshowa gsave 0.001 setlinewidth 0.08779 0.25656 moveto 0.0905 0.25914 lineto stroke grestore gsave 0.001 setlinewidth 0.11567 0.24565 moveto 0.11835 0.24825 lineto stroke grestore gsave 0.001 setlinewidth 0.14386 0.2346 moveto 0.14652 0.23724 lineto stroke grestore gsave 0.001 setlinewidth 0.17239 0.22343 moveto 0.17502 0.22609 lineto stroke grestore gsave 0.001 setlinewidth 0.23048 0.20069 moveto 0.23305 0.20341 lineto stroke grestore gsave 0.001 setlinewidth 0.26004 0.18911 moveto 0.26258 0.19186 lineto stroke grestore gsave 0.001 setlinewidth 0.28996 0.1774 moveto 0.29247 0.18017 lineto stroke grestore gsave 0.001 setlinewidth 0.32024 0.16554 moveto 0.32272 0.16835 lineto stroke grestore gsave 0.001 setlinewidth 0.38192 0.14139 moveto 0.38433 0.14425 lineto stroke grestore gsave 0.001 setlinewidth 0.41333 0.12909 moveto 0.4157 0.13198 lineto stroke grestore gsave 0.001 setlinewidth 0.44513 0.11664 moveto 0.44747 0.11956 lineto stroke grestore gsave 0.001 setlinewidth 0.47733 0.10403 moveto 0.47963 0.10698 lineto stroke grestore gsave 0.001 setlinewidth 0.54296 0.07833 moveto 0.54518 0.08134 lineto stroke grestore gsave 0.001 setlinewidth 0.5764 0.06524 moveto 0.57857 0.06828 lineto stroke grestore gsave 0.001 setlinewidth 0.61027 0.05198 moveto 0.6124 0.05505 lineto stroke grestore gsave 0.001 setlinewidth 0.64457 0.03854 moveto 0.64666 0.04164 lineto stroke grestore [(t)] 0.30204 0.09689 0.862234 1 Mshowa grestore gsave gsave 0.002 setlinewidth 0.67932 0.02494 moveto 0.94594 0.43277 lineto stroke grestore gsave 0.002 setlinewidth 0.67932 0.02494 moveto 0.67352 0.02721 lineto stroke grestore [(-2)] 0.69093 0.02039 -1 0.391569 Mshowa gsave 0.002 setlinewidth 0.7573 0.14421 moveto 0.75144 0.14634 lineto stroke grestore [(-1.8)] 0.76901 0.13994 -1 0.364128 Mshowa gsave 0.002 setlinewidth 0.82692 0.2507 moveto 0.82101 0.25271 lineto stroke grestore [(-1.6)] 0.83872 0.24668 -1 0.340282 Mshowa gsave 0.002 setlinewidth 0.88945 0.34636 moveto 0.88352 0.34826 lineto stroke grestore [(-1.4)] 0.90133 0.34257 -1 0.319367 Mshowa gsave 0.002 setlinewidth 0.94594 0.43277 moveto 0.93997 0.43456 lineto stroke grestore [(-1.2)] 0.95788 0.42917 -1 0.300874 Mshowa gsave 0.001 setlinewidth 0.69566 0.04992 moveto 0.69217 0.05127 lineto stroke grestore gsave 0.001 setlinewidth 0.71161 0.07432 moveto 0.70811 0.07565 lineto stroke grestore gsave 0.001 setlinewidth 0.72719 0.09816 moveto 0.72369 0.09947 lineto stroke grestore gsave 0.001 setlinewidth 0.74242 0.12145 moveto 0.73891 0.12274 lineto stroke grestore gsave 0.001 setlinewidth 0.77184 0.16646 moveto 0.76832 0.16772 lineto stroke grestore gsave 0.001 setlinewidth 0.78607 0.18822 moveto 0.78254 0.18947 lineto stroke grestore gsave 0.001 setlinewidth 0.79998 0.2095 moveto 0.79645 0.21074 lineto stroke grestore gsave 0.001 setlinewidth 0.81359 0.23032 moveto 0.81006 0.23154 lineto stroke grestore gsave 0.001 setlinewidth 0.83995 0.27064 moveto 0.83641 0.27183 lineto stroke grestore gsave 0.001 setlinewidth 0.85272 0.29017 moveto 0.84917 0.29135 lineto stroke grestore gsave 0.001 setlinewidth 0.86522 0.30929 moveto 0.86166 0.31045 lineto stroke grestore gsave 0.001 setlinewidth 0.87746 0.32802 moveto 0.8739 0.32917 lineto stroke grestore gsave 0.001 setlinewidth 0.90121 0.36434 moveto 0.89764 0.36546 lineto stroke grestore gsave 0.001 setlinewidth 0.91272 0.38196 moveto 0.90915 0.38307 lineto stroke grestore gsave 0.001 setlinewidth 0.92402 0.39923 moveto 0.92044 0.40033 lineto stroke grestore gsave 0.001 setlinewidth 0.93508 0.41616 moveto 0.93151 0.41725 lineto stroke grestore [(a)] 0.89773 0.2266 -1 0.340282 Mshowa grestore gsave gsave 0.002 setlinewidth 0.06024 0.26735 moveto 0.02494 0.49015 lineto stroke grestore gsave 0.002 setlinewidth 0.05946 0.27229 moveto 0.06527 0.27002 lineto stroke grestore [(0)] 0.04785 0.27682 1 -0.390596 Mshowa gsave 0.002 setlinewidth 0.05021 0.33065 moveto 0.05604 0.32844 lineto stroke grestore [(0.1)] 0.03855 0.33507 1 -0.379075 Mshowa gsave 0.002 setlinewidth 0.04059 0.39139 moveto 0.04644 0.38924 lineto stroke grestore [(0.2)] 0.02888 0.39568 1 -0.367037 Mshowa gsave 0.002 setlinewidth 0.03056 0.45465 moveto 0.03644 0.45256 lineto stroke grestore [(0.3)] 0.01881 0.45881 1 -0.354448 Mshowa gsave 0.001 setlinewidth 0.05764 0.28378 moveto 0.06113 0.28242 lineto stroke grestore gsave 0.001 setlinewidth 0.0558 0.29536 moveto 0.05929 0.29401 lineto stroke grestore gsave 0.001 setlinewidth 0.05395 0.30703 moveto 0.05745 0.30569 lineto stroke grestore gsave 0.001 setlinewidth 0.05209 0.31879 moveto 0.05558 0.31746 lineto stroke grestore gsave 0.001 setlinewidth 0.04832 0.3426 moveto 0.05182 0.34128 lineto stroke grestore gsave 0.001 setlinewidth 0.04641 0.35465 moveto 0.04991 0.35334 lineto stroke grestore gsave 0.001 setlinewidth 0.04448 0.3668 moveto 0.04799 0.36549 lineto stroke grestore gsave 0.001 setlinewidth 0.04254 0.37904 moveto 0.04605 0.37775 lineto stroke grestore gsave 0.001 setlinewidth 0.03861 0.40383 moveto 0.04213 0.40255 lineto stroke grestore gsave 0.001 setlinewidth 0.03663 0.41638 moveto 0.04014 0.41511 lineto stroke grestore gsave 0.001 setlinewidth 0.03462 0.42903 moveto 0.03814 0.42776 lineto stroke grestore gsave 0.001 setlinewidth 0.0326 0.44178 moveto 0.03612 0.44053 lineto stroke grestore gsave 0.001 setlinewidth 0.02851 0.46761 moveto 0.03203 0.46637 lineto stroke grestore gsave 0.001 setlinewidth 0.02643 0.48069 moveto 0.02997 0.47946 lineto stroke grestore [(y\(t\))] -0.02691 0.40064 1 -0.370357 Mshowa grestore % End of Graphics MathPictureEnd :[font = output; output; inactive; preserveAspect; endGroup; ] The Unformatted text for this cell was not generated. Use options in the Actions Settings dialog box to control when Unformatted text is generated. ;[o] -SurfaceGraphics- :[font = text; inactive; preserveAspect; ] Alternatively, we could set a to a constant value and plot y(t). For a = -2, y(t) is plotted below: :[font = input; Cclosed; preserveAspect; startGroup; ] Plot[ Release[ysol /. a -> -2], {t, 0, 2}, AxesLabel -> { "t", "y(t)" } ] :[font = postscript; PostScript; formatAsPostScript; output; inactive; initialization; preserveAspect; pictureLeft = 17; pictureWidth = 389; pictureHeight = 239; ] %! %%Creator: Mathematica %%AspectRatio: 0.61803 MathPictureStart /Courier findfont 10 scalefont setfont % Scaling calculations 0.02381 0.47619 0.014715 2.536585 [ [(0.5)] 0.2619 0.01472 0 2 Msboxa [(1)] 0.5 0.01472 0 2 Msboxa [(1.5)] 0.7381 0.01472 0 2 Msboxa [(2)] 0.97619 0.01472 0 2 Msboxa [(t)] 1.025 0.01472 -1 0 Msboxa [(0.05)] 0.01131 0.14154 1 0 Msboxa [(0.1)] 0.01131 0.26837 1 0 Msboxa [(0.15)] 0.01131 0.3952 1 0 Msboxa [(0.2)] 0.01131 0.52203 1 0 Msboxa [(y\(t\))] 0.02381 0.61803 0 -4 Msboxa [ -0.001 -0.001 0 0 ] [ 1.001 0.61903 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath %%Object: Graphics [ ] 0 setdash 0 setgray gsave gsave 0.002 setlinewidth 0.2619 0.01472 moveto 0.2619 0.02097 lineto stroke grestore [(0.5)] 0.2619 0.01472 0 2 Mshowa gsave 0.002 setlinewidth 0.5 0.01472 moveto 0.5 0.02097 lineto stroke grestore [(1)] 0.5 0.01472 0 2 Mshowa gsave 0.002 setlinewidth 0.7381 0.01472 moveto 0.7381 0.02097 lineto stroke grestore [(1.5)] 0.7381 0.01472 0 2 Mshowa gsave 0.002 setlinewidth 0.97619 0.01472 moveto 0.97619 0.02097 lineto stroke grestore [(2)] 0.97619 0.01472 0 2 Mshowa gsave 0.001 setlinewidth 0.07143 0.01472 moveto 0.07143 0.01847 lineto stroke grestore gsave 0.001 setlinewidth 0.11905 0.01472 moveto 0.11905 0.01847 lineto stroke grestore gsave 0.001 setlinewidth 0.16667 0.01472 moveto 0.16667 0.01847 lineto stroke grestore gsave 0.001 setlinewidth 0.21429 0.01472 moveto 0.21429 0.01847 lineto stroke grestore gsave 0.001 setlinewidth 0.30952 0.01472 moveto 0.30952 0.01847 lineto stroke grestore gsave 0.001 setlinewidth 0.35714 0.01472 moveto 0.35714 0.01847 lineto stroke grestore gsave 0.001 setlinewidth 0.40476 0.01472 moveto 0.40476 0.01847 lineto stroke grestore gsave 0.001 setlinewidth 0.45238 0.01472 moveto 0.45238 0.01847 lineto stroke grestore gsave 0.001 setlinewidth 0.54762 0.01472 moveto 0.54762 0.01847 lineto stroke grestore gsave 0.001 setlinewidth 0.59524 0.01472 moveto 0.59524 0.01847 lineto stroke grestore gsave 0.001 setlinewidth 0.64286 0.01472 moveto 0.64286 0.01847 lineto stroke grestore gsave 0.001 setlinewidth 0.69048 0.01472 moveto 0.69048 0.01847 lineto stroke grestore gsave 0.001 setlinewidth 0.78571 0.01472 moveto 0.78571 0.01847 lineto stroke grestore gsave 0.001 setlinewidth 0.83333 0.01472 moveto 0.83333 0.01847 lineto stroke grestore gsave 0.001 setlinewidth 0.88095 0.01472 moveto 0.88095 0.01847 lineto stroke grestore gsave 0.001 setlinewidth 0.92857 0.01472 moveto 0.92857 0.01847 lineto stroke grestore [(t)] 1.025 0.01472 -1 0 Mshowa gsave 0.002 setlinewidth 0 0.01472 moveto 1 0.01472 lineto stroke grestore gsave 0.002 setlinewidth 0.02381 0.14154 moveto 0.03006 0.14154 lineto stroke grestore [(0.05)] 0.01131 0.14154 1 0 Mshowa gsave 0.002 setlinewidth 0.02381 0.26837 moveto 0.03006 0.26837 lineto stroke grestore [(0.1)] 0.01131 0.26837 1 0 Mshowa gsave 0.002 setlinewidth 0.02381 0.3952 moveto 0.03006 0.3952 lineto stroke grestore [(0.15)] 0.01131 0.3952 1 0 Mshowa gsave 0.002 setlinewidth 0.02381 0.52203 moveto 0.03006 0.52203 lineto stroke grestore [(0.2)] 0.01131 0.52203 1 0 Mshowa gsave 0.001 setlinewidth 0.02381 0.04008 moveto 0.02756 0.04008 lineto stroke grestore gsave 0.001 setlinewidth 0.02381 0.06545 moveto 0.02756 0.06545 lineto stroke grestore gsave 0.001 setlinewidth 0.02381 0.09081 moveto 0.02756 0.09081 lineto stroke grestore gsave 0.001 setlinewidth 0.02381 0.11618 moveto 0.02756 0.11618 lineto stroke grestore gsave 0.001 setlinewidth 0.02381 0.16691 moveto 0.02756 0.16691 lineto stroke grestore gsave 0.001 setlinewidth 0.02381 0.19228 moveto 0.02756 0.19228 lineto stroke grestore gsave 0.001 setlinewidth 0.02381 0.21764 moveto 0.02756 0.21764 lineto stroke grestore gsave 0.001 setlinewidth 0.02381 0.24301 moveto 0.02756 0.24301 lineto stroke grestore gsave 0.001 setlinewidth 0.02381 0.29374 moveto 0.02756 0.29374 lineto stroke grestore gsave 0.001 setlinewidth 0.02381 0.31911 moveto 0.02756 0.31911 lineto stroke grestore gsave 0.001 setlinewidth 0.02381 0.34447 moveto 0.02756 0.34447 lineto stroke grestore gsave 0.001 setlinewidth 0.02381 0.36984 moveto 0.02756 0.36984 lineto stroke grestore gsave 0.001 setlinewidth 0.02381 0.42057 moveto 0.02756 0.42057 lineto stroke grestore gsave 0.001 setlinewidth 0.02381 0.44593 moveto 0.02756 0.44593 lineto stroke grestore gsave 0.001 setlinewidth 0.02381 0.4713 moveto 0.02756 0.4713 lineto stroke grestore gsave 0.001 setlinewidth 0.02381 0.49667 moveto 0.02756 0.49667 lineto stroke grestore gsave 0.001 setlinewidth 0.02381 0.5474 moveto 0.02756 0.5474 lineto stroke grestore gsave 0.001 setlinewidth 0.02381 0.57276 moveto 0.02756 0.57276 lineto stroke grestore gsave 0.001 setlinewidth 0.02381 0.59813 moveto 0.02756 0.59813 lineto stroke grestore [(y\(t\))] 0.02381 0.61803 0 -4 Mshowa gsave 0.002 setlinewidth 0.02381 0 moveto 0.02381 0.61803 lineto stroke grestore grestore 0 0 moveto 1 0 lineto 1 0.61803 lineto 0 0.61803 lineto closepath clip newpath gsave gsave 0.004 setlinewidth 0.02381 0.01472 moveto 0.02505 0.01472 lineto 0.02629 0.01475 lineto 0.02753 0.01479 lineto 0.02877 0.01485 lineto 0.03001 0.01493 lineto 0.03125 0.01502 lineto 0.03373 0.01525 lineto 0.03869 0.01591 lineto 0.04365 0.01681 lineto 0.05357 0.01932 lineto 0.06349 0.02271 lineto 0.08333 0.03186 lineto 0.10317 0.04376 lineto 0.14286 0.07411 lineto 0.18254 0.11074 lineto 0.22222 0.15127 lineto 0.2619 0.19378 lineto 0.30159 0.23681 lineto 0.34127 0.27921 lineto 0.38095 0.32014 lineto 0.42063 0.35895 lineto 0.46032 0.39521 lineto 0.5 0.42862 lineto 0.53968 0.45899 lineto 0.57937 0.48624 lineto 0.61905 0.51035 lineto 0.65873 0.53138 lineto 0.69841 0.5494 lineto 0.7381 0.56453 lineto 0.77778 0.57691 lineto 0.81746 0.5867 lineto 0.8373 0.59068 lineto 0.85714 0.59407 lineto 0.87698 0.5969 lineto 0.89683 0.59918 lineto 0.91667 0.60094 lineto 0.93651 0.60221 lineto 0.94643 0.60266 lineto 0.95139 0.60284 lineto 0.95635 0.60299 lineto 0.96131 0.60312 lineto 0.96627 0.60321 lineto 0.96875 0.60325 lineto 0.97123 0.60328 lineto 0.97371 0.6033 lineto 0.97619 0.60332 lineto stroke grestore grestore % End of Graphics MathPictureEnd :[font = output; output; inactive; preserveAspect; endGroup; endGroup; endGroup; ] The Unformatted text for this cell was not generated. Use options in the Actions Settings dialog box to control when Unformatted text is generated. ;[o] -Graphics- :[font = section; inactive; Cclosed; preserveAspect; startGroup; ] Differential Equation With Initial Conditions :[font = subsubsection; inactive; preserveAspect; ] Example :[font = text; inactive; preserveAspect; ] The analysis carried out for a differential equation with zero-valued initial conditions applies to those with non-zero initial conditions. Here is the same differential equation with y'(0) = 1/2 and y(0) = 4: :[font = input; Cclosed; preserveAspect; startGroup; ] LSolve[ y''[t] + 3/2 y'[t] + 1/2 y[t] == Exp[a t] CStep[t], y[t], y'[0] -> 1/2, y[0] -> 4 ] :[font = print; inactive; preserveAspect; ] Solving for y[t] in the differential equation y[t] 3 y'[t] a t ---- + ------- + y''[t] = E CStep[t] 2 2 subject to the initial conditions 1 {y'[0] -> -, y[0] -> 4} 2 After taking the Laplace transform of both sides and solving for the transform of y[t]: 13 1 -- + 4 s + ----- 2 s - a ---------------- 1 3 s 2 - + --- + s 2 2 Inverse transforming this gives y[t]: :[font = output; output; inactive; preserveAspect; endGroup; ] ((-3 - 11*a - 10*a^2 + 5*E^(t/2) + 23*a*E^(t/2) + 18*a^2*E^(t/2) + 2*E^(t + a*t))*CStep[t])/((1 + 3*a + 2*a^2)*E^t) ;[o] 2 t/2 t/2 2 t/2 t + a t ((-3 - 11 a - 10 a + 5 E + 23 a E + 18 a E + 2 E ) 2 t CStep[t]) / ((1 + 3 a + 2 a ) E ) :[font = text; inactive; preserveAspect; ] Again, implied here is that we want the solution to the differential equation when t > 0. So once again, we will drop the step functions since they are 1 for t > 0. :[font = subsubsection; inactive; Cclosed; preserveAspect; startGroup; ] Verifying a Solution :[font = text; inactive; preserveAspect; ] We can now use Mathematica to verify the solution, which we assign to the function ysol: :[font = input; initialization; Cclosed; preserveAspect; startGroup; ] *) yicsol = (5 + 18 a) Exp[-t/2] / (1 + 2 a) + (3 + 5 a) Exp[-t] / (-1 - a) - 2 Exp[a t] / (-1 - 3 a - 2 a^2 ) (* :[font = output; output; inactive; preserveAspect; endGroup; ] (3 + 5*a)/((-1 - a)*E^t) + (5 + 18*a)/((1 + 2*a)*E^(t/2)) - (2*E^(a*t))/(-1 - 3*a - 2*a^2) ;[o] a t 3 + 5 a 5 + 18 a 2 E ----------- + -------------- - --------------- t t/2 2 (-1 - a) E (1 + 2 a) E -1 - 3 a - 2 a :[font = text; inactive; preserveAspect; ] We can now check to make sure that the initial conditions are valid. First, we check to see if y(0+) = 4: :[font = input; Cclosed; preserveAspect; startGroup; ] yicsol /. t -> 0 :[font = output; output; inactive; preserveAspect; endGroup; ] (3 + 5*a)/(-1 - a) + (5 + 18*a)/(1 + 2*a) - 2/(-1 - 3*a - 2*a^2) ;[o] 3 + 5 a 5 + 18 a 2 ------- + -------- - --------------- -1 - a 1 + 2 a 2 -1 - 3 a - 2 a :[font = text; inactive; preserveAspect; ] This may not look like four but it actually is: :[font = input; Cclosed; preserveAspect; startGroup; ] Simplify[ yicsol /. t -> 0 ] :[font = output; output; inactive; preserveAspect; endGroup; ] 4 ;[o] 4 :[font = text; inactive; preserveAspect; ] Second, we can check to make sure that ysol'(0+) equals 1/2: :[font = input; initialization; Cclosed; preserveAspect; startGroup; ] *) Simplify[ D[ yicsol, t ] /. t -> 0 ] (* :[font = output; output; inactive; preserveAspect; endGroup; ] 1/2 ;[o] 1 - 2 :[font = text; inactive; preserveAspect; ] Next, we can try to verify that the solution satisfies the differential equation: :[font = input; Cclosed; preserveAspect; startGroup; ] yicsolprime = D[ yicsol, t]; yicsoldblprime = D[ yicsolprime, t]; Simplify[ yicsoldblprime + 3/2 yicsolprime + 1/2 yicsol ] :[font = output; output; inactive; preserveAspect; endGroup; endGroup; ] E^(a*t) ;[o] a t E :[font = subsubsection; inactive; Cclosed; preserveAspect; startGroup; ] Analyzing a Solution :[font = text; inactive; preserveAspect; ] Now that we shown that the solution is correct, we can analyze the solution. First, there are certain values of the free parameter a which yield an unbounded (and hence invalid) solution. This occurs when any of the denominator terms become zero, which happens when a = -1/2 and when a = -1. This can be seen from inspection, but Mathematica can determine these values in the general case. Again, we convert the solution from its form of Plus[term1, term2, term3] to a list of the form List[term1, term2, term3] by using Apply and then solve the cases where each denominator is zero using Solve: :[font = input; Cclosed; preserveAspect; startGroup; ] Map[ Solve[Denominator[#1] == 0, a]&, Apply[List, yicsol] ] :[font = output; output; inactive; preserveAspect; endGroup; endGroup; ] {{{a -> -1}}, {{a -> -1/2}}, {{a -> -1}, {a -> -1/2}}} ;[o] 1 1 {{{a -> -1}}, {{a -> -(-)}}, {{a -> -1}, {a -> -(-)}}} 2 2 :[font = subsubsection; inactive; Cclosed; preserveAspect; startGroup; ] Interpreting a Solution :[font = text; inactive; preserveAspect; ] In this case, ysol is assigned to the solution of the differential equation automatically by the notebook. To plot the solution, then, we simplify plot ysol for different values of a: :[font = input; Cclosed; preserveAspect; startGroup; ] Plot3D[ yicsol, {t, 0, 1}, {a, -1.1, -2}, AxesLabel -> { "t", "a", " " } ] :[font = postscript; PostScript; formatAsPostScript; output; inactive; preserveAspect; pictureLeft = 17; pictureWidth = 389; pictureHeight = 239; ] %! %%Creator: Mathematica %%AspectRatio: 0.82055 MathPictureStart /Courier findfont 10 scalefont setfont % Scaling calculations 0.024936 0.99742 -0.039634 0.99742 [ [(0)] 0.05113 0.25884 1 0.933946 Msboxa [(0.2)] 0.16364 0.21456 0.987329 1 Msboxa [(0.4)] 0.2816 0.16815 0.903932 1 Msboxa [(0.6)] 0.40542 0.11945 0.820535 1 Msboxa [(0.8)] 0.53556 0.0683 0.737139 1 Msboxa [(1)] 0.6725 0.0145 0.653742 1 Msboxa [(t)] 0.30204 0.09689 0.862234 1 Msboxa [(-2)] 0.69093 0.02039 -1 0.391569 Msboxa [(-1.8)] 0.76078 0.12733 -1 0.366986 Msboxa [(-1.6)] 0.82388 0.22396 -1 0.345307 Msboxa [(-1.4)] 0.88118 0.31171 -1 0.326047 Msboxa [(-1.2)] 0.93344 0.39174 -1 0.308822 Msboxa [(a)] 0.89773 0.2266 -1 0.340282 Msboxa [(3.8)] 0.04597 0.28858 1 -0.388274 Msboxa [(3.9)] 0.03492 0.35785 1 -0.374557 Msboxa [(4)] 0.02333 0.43046 1 -0.360108 Msboxa [( )] -0.02691 0.40064 1 -0.370357 Msboxa [ 0 0 0 0 ] [ 1 0.820555 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath %%Object: SurfaceGraphics [ ] 0 setdash 0 setgray gsave gsave 0.002 setlinewidth 0.06024 0.26735 moveto 0.67932 0.02494 lineto stroke grestore gsave 0.002 setlinewidth 0.06024 0.26735 moveto 0.0648 0.2716 lineto stroke grestore [(0)] 0.05113 0.25884 1 0.933946 Mshowa gsave 0.002 setlinewidth 0.17239 0.22343 moveto 0.17677 0.22787 lineto stroke grestore [(0.2)] 0.16364 0.21456 0.987329 1 Mshowa gsave 0.002 setlinewidth 0.28996 0.1774 moveto 0.29414 0.18202 lineto stroke grestore [(0.4)] 0.2816 0.16815 0.903932 1 Mshowa gsave 0.002 setlinewidth 0.41333 0.12909 moveto 0.41729 0.13391 lineto stroke grestore [(0.6)] 0.40542 0.11945 0.820535 1 Mshowa gsave 0.002 setlinewidth 0.54296 0.07833 moveto 0.54666 0.08335 lineto stroke grestore [(0.8)] 0.53556 0.0683 0.737139 1 Mshowa gsave 0.002 setlinewidth 0.67932 0.02494 moveto 0.68274 0.03015 lineto stroke grestore [(1)] 0.6725 0.0145 0.653742 1 Mshowa gsave 0.001 setlinewidth 0.08226 0.25873 moveto 0.08497 0.2613 lineto stroke grestore gsave 0.001 setlinewidth 0.10448 0.25003 moveto 0.10717 0.25262 lineto stroke grestore gsave 0.001 setlinewidth 0.12691 0.24125 moveto 0.12958 0.24386 lineto stroke grestore gsave 0.001 setlinewidth 0.14954 0.23238 moveto 0.15219 0.23502 lineto stroke grestore gsave 0.001 setlinewidth 0.19546 0.2144 moveto 0.19807 0.21708 lineto stroke grestore gsave 0.001 setlinewidth 0.21875 0.20528 moveto 0.22133 0.20799 lineto stroke grestore gsave 0.001 setlinewidth 0.24226 0.19608 moveto 0.24482 0.19881 lineto stroke grestore gsave 0.001 setlinewidth 0.26599 0.18678 moveto 0.26853 0.18953 lineto stroke grestore gsave 0.001 setlinewidth 0.31415 0.16792 moveto 0.31664 0.17072 lineto stroke grestore gsave 0.001 setlinewidth 0.33859 0.15836 moveto 0.34104 0.16118 lineto stroke grestore gsave 0.001 setlinewidth 0.36326 0.1487 moveto 0.36569 0.15154 lineto stroke grestore gsave 0.001 setlinewidth 0.38817 0.13894 moveto 0.39057 0.14181 lineto stroke grestore gsave 0.001 setlinewidth 0.43874 0.11914 moveto 0.44108 0.12206 lineto stroke grestore gsave 0.001 setlinewidth 0.4644 0.10909 moveto 0.46672 0.11203 lineto stroke grestore gsave 0.001 setlinewidth 0.49033 0.09894 moveto 0.49261 0.1019 lineto stroke grestore gsave 0.001 setlinewidth 0.51651 0.08869 moveto 0.51876 0.09168 lineto stroke grestore gsave 0.001 setlinewidth 0.56967 0.06787 moveto 0.57186 0.07091 lineto stroke grestore gsave 0.001 setlinewidth 0.59667 0.0573 moveto 0.59882 0.06036 lineto stroke grestore gsave 0.001 setlinewidth 0.62394 0.04662 moveto 0.62605 0.04971 lineto stroke grestore gsave 0.001 setlinewidth 0.65149 0.03584 moveto 0.65357 0.03894 lineto stroke grestore [(t)] 0.30204 0.09689 0.862234 1 Mshowa grestore gsave gsave 0.002 setlinewidth 0.67932 0.02494 moveto 0.94594 0.43277 lineto stroke grestore gsave 0.002 setlinewidth 0.67932 0.02494 moveto 0.67352 0.02721 lineto stroke grestore [(-2)] 0.69093 0.02039 -1 0.391569 Mshowa gsave 0.002 setlinewidth 0.74907 0.13163 moveto 0.74322 0.13377 lineto stroke grestore [(-1.8)] 0.76078 0.12733 -1 0.366986 Mshowa gsave 0.002 setlinewidth 0.8121 0.22803 moveto 0.8062 0.23007 lineto stroke grestore [(-1.6)] 0.82388 0.22396 -1 0.345307 Mshowa gsave 0.002 setlinewidth 0.86933 0.31557 moveto 0.8634 0.31751 lineto stroke grestore [(-1.4)] 0.88118 0.31171 -1 0.326047 Mshowa gsave 0.002 setlinewidth 0.92153 0.39542 moveto 0.91557 0.39726 lineto stroke grestore [(-1.2)] 0.93344 0.39174 -1 0.308822 Mshowa gsave 0.001 setlinewidth 0.69386 0.04717 moveto 0.69037 0.04852 lineto stroke grestore gsave 0.001 setlinewidth 0.7081 0.06895 moveto 0.7046 0.07028 lineto stroke grestore gsave 0.001 setlinewidth 0.72204 0.09027 moveto 0.71854 0.09159 lineto stroke grestore gsave 0.001 setlinewidth 0.73569 0.11116 moveto 0.73219 0.11246 lineto stroke grestore gsave 0.001 setlinewidth 0.76218 0.15168 moveto 0.75867 0.15295 lineto stroke grestore gsave 0.001 setlinewidth 0.77503 0.17134 moveto 0.77151 0.1726 lineto stroke grestore gsave 0.001 setlinewidth 0.78763 0.19061 moveto 0.7841 0.19185 lineto stroke grestore gsave 0.001 setlinewidth 0.79998 0.2095 moveto 0.79645 0.21074 lineto stroke grestore gsave 0.001 setlinewidth 0.82398 0.24621 moveto 0.82044 0.24742 lineto stroke grestore gsave 0.001 setlinewidth 0.83564 0.26404 moveto 0.83209 0.26524 lineto stroke grestore gsave 0.001 setlinewidth 0.84708 0.28154 moveto 0.84353 0.28272 lineto stroke grestore gsave 0.001 setlinewidth 0.85831 0.29872 moveto 0.85475 0.29989 lineto stroke grestore gsave 0.001 setlinewidth 0.88015 0.33213 moveto 0.87659 0.33327 lineto stroke grestore gsave 0.001 setlinewidth 0.89077 0.34838 moveto 0.88721 0.34951 lineto stroke grestore gsave 0.001 setlinewidth 0.90121 0.36434 moveto 0.89764 0.36546 lineto stroke grestore gsave 0.001 setlinewidth 0.91146 0.38002 moveto 0.90789 0.38113 lineto stroke grestore gsave 0.001 setlinewidth 0.93142 0.41055 moveto 0.92784 0.41165 lineto stroke grestore gsave 0.001 setlinewidth 0.94114 0.42543 moveto 0.93756 0.42651 lineto stroke grestore [(a)] 0.89773 0.2266 -1 0.340282 Mshowa grestore gsave gsave 0.002 setlinewidth 0.06024 0.26735 moveto 0.02494 0.49015 lineto stroke grestore gsave 0.002 setlinewidth 0.05759 0.28407 moveto 0.0634 0.28181 lineto stroke grestore [(3.8)] 0.04597 0.28858 1 -0.388274 Mshowa gsave 0.002 setlinewidth 0.04659 0.35348 moveto 0.05243 0.35129 lineto stroke grestore [(3.9)] 0.03492 0.35785 1 -0.374557 Mshowa gsave 0.002 setlinewidth 0.03506 0.42624 moveto 0.04093 0.42413 lineto stroke grestore [(4)] 0.02333 0.43046 1 -0.360108 Mshowa gsave 0.001 setlinewidth 0.05543 0.29769 moveto 0.05892 0.29635 lineto stroke grestore gsave 0.001 setlinewidth 0.05325 0.31144 moveto 0.05675 0.31011 lineto stroke grestore gsave 0.001 setlinewidth 0.05105 0.32532 moveto 0.05455 0.324 lineto stroke grestore gsave 0.001 setlinewidth 0.04883 0.33933 moveto 0.05233 0.33801 lineto stroke grestore gsave 0.001 setlinewidth 0.04433 0.36775 moveto 0.04784 0.36645 lineto stroke grestore gsave 0.001 setlinewidth 0.04205 0.38216 moveto 0.04556 0.38087 lineto stroke grestore gsave 0.001 setlinewidth 0.03974 0.39671 moveto 0.04325 0.39543 lineto stroke grestore gsave 0.001 setlinewidth 0.03741 0.41141 moveto 0.04093 0.41013 lineto stroke grestore gsave 0.001 setlinewidth 0.05973 0.27057 moveto 0.06322 0.26921 lineto stroke grestore gsave 0.001 setlinewidth 0.03269 0.44121 moveto 0.03621 0.43996 lineto stroke grestore gsave 0.001 setlinewidth 0.03029 0.45634 moveto 0.03382 0.45509 lineto stroke grestore gsave 0.001 setlinewidth 0.02787 0.47161 moveto 0.0314 0.47037 lineto stroke grestore gsave 0.001 setlinewidth 0.02543 0.48703 moveto 0.02896 0.4858 lineto stroke grestore [( )] -0.02691 0.40064 1 -0.370357 Mshowa grestore 0 0 moveto 1 0 lineto 1 0.82055 lineto 0 0.82055 lineto closepath clip newpath gsave 0.002 setlinewidth 0.06024 0.26735 moveto 0.02494 0.49015 lineto stroke 0.02494 0.49015 moveto 0.40296 0.79562 lineto stroke 0.40296 0.79562 moveto 0.41001 0.59401 lineto stroke 0.41001 0.59401 moveto 0.06024 0.26735 lineto stroke 0.67932 0.02494 moveto 0.94594 0.43277 lineto stroke 0.94594 0.43277 moveto 0.97506 0.64585 lineto stroke 0.97506 0.64585 moveto 0.69286 0.25814 lineto stroke 0.69286 0.25814 moveto 0.67932 0.02494 lineto stroke 0.06024 0.26735 moveto 0.02494 0.49015 lineto stroke 0.02494 0.49015 moveto 0.69286 0.25814 lineto stroke 0.69286 0.25814 moveto 0.67932 0.02494 lineto stroke 0.67932 0.02494 moveto 0.06024 0.26735 lineto stroke 0.41001 0.59401 moveto 0.94594 0.43277 lineto stroke 0.94594 0.43277 moveto 0.97506 0.64585 lineto stroke 0.97506 0.64585 moveto 0.40296 0.79562 lineto stroke 0.40296 0.79562 moveto 0.41001 0.59401 lineto stroke grestore gsave 0.195 0.557 0.934 setrgbcolor 0.0015 setlinewidth 0.38309 0.71988 0.40497 0.73833 0.44086 0.74962 0.41917 0.73107 Metetra 0.366 0.65 0.965 setrgbcolor 0.41917 0.73107 0.44086 0.74962 0.47781 0.75536 0.45636 0.73664 Metetra 0.491 0.707 0.966 setrgbcolor 0.45636 0.73664 0.47781 0.75536 0.51566 0.75565 0.49451 0.73669 Metetra 0.581 0.741 0.952 setrgbcolor 0.49451 0.73669 0.51566 0.75565 0.55426 0.75063 0.53345 0.73136 Metetra 0.645 0.761 0.933 setrgbcolor 0.53345 0.73136 0.55426 0.75063 0.59345 0.74052 0.57302 0.72085 Metetra 0.693 0.773 0.913 setrgbcolor 0.57302 0.72085 0.59345 0.74052 0.63308 0.72556 0.61307 0.70541 Metetra 0.728 0.78 0.894 setrgbcolor 0.61307 0.70541 0.63308 0.72556 0.67301 0.70604 0.65345 0.68532 Metetra 0.756 0.784 0.876 setrgbcolor 0.65345 0.68532 0.67301 0.70604 0.7131 0.68227 0.69402 0.6609 Metetra 0.777 0.786 0.86 setrgbcolor 0.69402 0.6609 0.7131 0.68227 0.75323 0.65458 0.73464 0.6325 Metetra 0.794 0.786 0.845 setrgbcolor 0.73464 0.6325 0.75323 0.65458 0.79329 0.62332 0.7752 0.60046 Metetra 0.808 0.786 0.833 setrgbcolor 0.7752 0.60046 0.79329 0.62332 0.83317 0.58883 0.81559 0.56514 Metetra 0.819 0.786 0.821 setrgbcolor 0.81559 0.56514 0.83317 0.58883 0.87279 0.55147 0.85573 0.52691 Metetra 0.828 0.784 0.811 setrgbcolor 0.85573 0.52691 0.87279 0.55147 0.91207 0.51158 0.89551 0.48611 Metetra 0.835 0.783 0.802 setrgbcolor 0.89551 0.48611 0.91207 0.51158 0.95096 0.46948 0.9349 0.44309 Metetra 0.195 0.557 0.934 setrgbcolor 0.36063 0.70093 0.38309 0.71988 0.41917 0.73107 0.39689 0.712 Metetra 0.367 0.65 0.965 setrgbcolor 0.39689 0.712 0.41917 0.73107 0.45636 0.73664 0.43432 0.71741 Metetra 0.492 0.707 0.966 setrgbcolor 0.43432 0.71741 0.45636 0.73664 0.49451 0.73669 0.47276 0.71721 Metetra 0.582 0.741 0.952 setrgbcolor 0.47276 0.71721 0.49451 0.73669 0.53345 0.73136 0.51205 0.71155 Metetra 0.646 0.761 0.933 setrgbcolor 0.51205 0.71155 0.53345 0.73136 0.57302 0.72085 0.55202 0.70063 Metetra 0.694 0.773 0.912 setrgbcolor 0.55202 0.70063 0.57302 0.72085 0.61307 0.70541 0.5925 0.68469 Metetra 0.73 0.78 0.893 setrgbcolor 0.5925 0.68469 0.61307 0.70541 0.65345 0.68532 0.63335 0.66402 Metetra 0.757 0.784 0.875 setrgbcolor 0.63335 0.66402 0.65345 0.68532 0.69402 0.6609 0.6744 0.63894 Metetra 0.779 0.786 0.859 setrgbcolor 0.6744 0.63894 0.69402 0.6609 0.73464 0.6325 0.71554 0.60981 Metetra 0.796 0.787 0.844 setrgbcolor 0.71554 0.60981 0.73464 0.6325 0.7752 0.60046 0.75662 0.57698 Metetra 0.809 0.787 0.832 setrgbcolor 0.75662 0.57698 0.7752 0.60046 0.81559 0.56514 0.79754 0.54083 Metetra 0.82 0.786 0.82 setrgbcolor 0.79754 0.54083 0.81559 0.56514 0.85573 0.52691 0.8382 0.50172 Metetra 0.83 0.785 0.81 setrgbcolor 0.8382 0.50172 0.85573 0.52691 0.89551 0.48611 0.87851 0.46002 Metetra 0.837 0.784 0.801 setrgbcolor 0.87851 0.46002 0.89551 0.48611 0.9349 0.44309 0.91842 0.41608 Metetra 0.195 0.557 0.934 setrgbcolor 0.33756 0.68146 0.36063 0.70093 0.39689 0.712 0.374 0.69242 Metetra 0.367 0.65 0.965 setrgbcolor 0.374 0.69242 0.39689 0.712 0.43432 0.71741 0.41167 0.69764 Metetra 0.493 0.707 0.966 setrgbcolor 0.41167 0.69764 0.43432 0.71741 0.47276 0.71721 0.45041 0.69718 Metetra 0.583 0.741 0.952 setrgbcolor 0.45041 0.69718 0.47276 0.71721 0.51205 0.71155 0.49005 0.69118 Metetra 0.648 0.762 0.932 setrgbcolor 0.49005 0.69118 0.51205 0.71155 0.55202 0.70063 0.53042 0.67984 Metetra 0.695 0.773 0.912 setrgbcolor 0.53042 0.67984 0.55202 0.70063 0.5925 0.68469 0.57134 0.66338 Metetra 0.731 0.78 0.892 setrgbcolor 0.57134 0.66338 0.5925 0.68469 0.63335 0.66402 0.61267 0.64212 Metetra 0.759 0.784 0.874 setrgbcolor 0.61267 0.64212 0.63335 0.66402 0.6744 0.63894 0.65423 0.61637 Metetra 0.78 0.786 0.858 setrgbcolor 0.65423 0.61637 0.6744 0.63894 0.71554 0.60981 0.69588 0.5865 Metetra 0.797 0.787 0.843 setrgbcolor 0.69588 0.5865 0.71554 0.60981 0.75662 0.57698 0.7375 0.55288 Metetra 0.811 0.787 0.831 setrgbcolor 0.7375 0.55288 0.75662 0.57698 0.79754 0.54083 0.77897 0.51588 Metetra 0.822 0.787 0.819 setrgbcolor 0.77897 0.51588 0.79754 0.54083 0.8382 0.50172 0.82018 0.47589 Metetra 0.831 0.786 0.809 setrgbcolor 0.82018 0.47589 0.8382 0.50172 0.87851 0.46002 0.86105 0.43328 Metetra 0.839 0.785 0.8 setrgbcolor 0.86105 0.43328 0.87851 0.46002 0.91842 0.41608 0.90149 0.38842 Metetra 0.195 0.557 0.934 setrgbcolor 0.31385 0.66146 0.33756 0.68146 0.374 0.69242 0.35046 0.67228 Metetra 0.368 0.65 0.965 setrgbcolor 0.35046 0.67228 0.374 0.69242 0.41167 0.69764 0.38837 0.6773 Metetra 0.494 0.708 0.965 setrgbcolor 0.38837 0.6773 0.41167 0.69764 0.45041 0.69718 0.42741 0.67658 Metetra 0.584 0.742 0.951 setrgbcolor 0.42741 0.67658 0.45041 0.69718 0.49005 0.69118 0.46741 0.67023 Metetra 0.649 0.762 0.932 setrgbcolor 0.46741 0.67023 0.49005 0.69118 0.53042 0.67984 0.50819 0.65844 Metetra 0.697 0.774 0.911 setrgbcolor 0.50819 0.65844 0.53042 0.67984 0.57134 0.66338 0.54957 0.64146 Metetra 0.732 0.781 0.891 setrgbcolor 0.54957 0.64146 0.57134 0.66338 0.61267 0.64212 0.59138 0.61959 Metetra 0.76 0.785 0.873 setrgbcolor 0.59138 0.61959 0.61267 0.64212 0.65423 0.61637 0.63346 0.59316 Metetra 0.781 0.787 0.857 setrgbcolor 0.63346 0.59316 0.65423 0.61637 0.69588 0.5865 0.67566 0.56254 Metetra 0.799 0.788 0.842 setrgbcolor 0.67566 0.56254 0.69588 0.5865 0.7375 0.55288 0.71784 0.5281 Metetra 0.812 0.788 0.83 setrgbcolor 0.71784 0.5281 0.7375 0.55288 0.77897 0.51588 0.75988 0.49025 Metetra 0.823 0.787 0.818 setrgbcolor 0.75988 0.49025 0.77897 0.51588 0.82018 0.47589 0.80166 0.44937 Metetra 0.833 0.786 0.808 setrgbcolor 0.80166 0.44937 0.82018 0.47589 0.86105 0.43328 0.8431 0.40585 Metetra 0.84 0.785 0.799 setrgbcolor 0.8431 0.40585 0.86105 0.43328 0.90149 0.38842 0.88411 0.36006 Metetra 0.195 0.557 0.934 setrgbcolor 0.28948 0.6409 0.31385 0.66146 0.35046 0.67228 0.32626 0.65157 Metetra 0.368 0.651 0.965 setrgbcolor 0.32626 0.65157 0.35046 0.67228 0.38837 0.6773 0.36441 0.65639 Metetra 0.494 0.708 0.965 setrgbcolor 0.36441 0.65639 0.38837 0.6773 0.42741 0.67658 0.40375 0.65538 Metetra 0.585 0.742 0.951 setrgbcolor 0.40375 0.65538 0.42741 0.67658 0.46741 0.67023 0.44411 0.64866 Metetra 0.65 0.762 0.931 setrgbcolor 0.44411 0.64866 0.46741 0.67023 0.50819 0.65844 0.48531 0.63642 Metetra 0.698 0.774 0.911 setrgbcolor 0.48531 0.63642 0.50819 0.65844 0.54957 0.64146 0.52715 0.6189 Metetra 0.734 0.781 0.891 setrgbcolor 0.52715 0.6189 0.54957 0.64146 0.59138 0.61959 0.56947 0.5964 Metetra 0.761 0.785 0.872 setrgbcolor 0.56947 0.5964 0.59138 0.61959 0.63346 0.59316 0.61209 0.56928 Metetra 0.783 0.787 0.856 setrgbcolor 0.61209 0.56928 0.63346 0.59316 0.67566 0.56254 0.65485 0.53789 Metetra 0.8 0.788 0.842 setrgbcolor 0.65485 0.53789 0.67566 0.56254 0.71784 0.5281 0.69761 0.50263 Metetra 0.814 0.788 0.829 setrgbcolor 0.69761 0.50263 0.71784 0.5281 0.75988 0.49025 0.74023 0.46392 Metetra 0.825 0.788 0.817 setrgbcolor 0.74023 0.46392 0.75988 0.49025 0.80166 0.44937 0.78261 0.42214 Metetra 0.834 0.787 0.807 setrgbcolor 0.78261 0.42214 0.80166 0.44937 0.8431 0.40585 0.82464 0.3777 Metetra 0.842 0.786 0.798 setrgbcolor 0.82464 0.3777 0.8431 0.40585 0.88411 0.36006 0.86625 0.33098 Metetra 0.195 0.557 0.934 setrgbcolor 0.26442 0.61975 0.28948 0.6409 0.32626 0.65157 0.30136 0.63027 Metetra 0.369 0.651 0.965 setrgbcolor 0.30136 0.63027 0.32626 0.65157 0.36441 0.65639 0.33974 0.63486 Metetra 0.495 0.708 0.965 setrgbcolor 0.33974 0.63486 0.36441 0.65639 0.40375 0.65538 0.37939 0.63356 Metetra 0.586 0.742 0.951 setrgbcolor 0.37939 0.63356 0.40375 0.65538 0.44411 0.64866 0.42012 0.62646 Metetra 0.651 0.763 0.931 setrgbcolor 0.42012 0.62646 0.44411 0.64866 0.48531 0.63642 0.46174 0.61374 Metetra 0.699 0.774 0.91 setrgbcolor 0.46174 0.61374 0.48531 0.63642 0.52715 0.6189 0.50407 0.59567 Metetra 0.735 0.781 0.89 setrgbcolor 0.50407 0.59567 0.52715 0.6189 0.56947 0.5964 0.5469 0.57253 Metetra 0.763 0.785 0.872 setrgbcolor 0.5469 0.57253 0.56947 0.5964 0.61209 0.56928 0.59007 0.54469 Metetra 0.784 0.787 0.855 setrgbcolor 0.59007 0.54469 0.61209 0.56928 0.65485 0.53789 0.63342 0.51252 Metetra 0.801 0.788 0.841 setrgbcolor 0.63342 0.51252 0.65485 0.53789 0.69761 0.50263 0.67677 0.47644 Metetra 0.815 0.788 0.828 setrgbcolor 0.67677 0.47644 0.69761 0.50263 0.74023 0.46392 0.72001 0.43684 Metetra 0.826 0.788 0.816 setrgbcolor 0.72001 0.43684 0.74023 0.46392 0.78261 0.42214 0.76301 0.39416 Metetra 0.835 0.788 0.806 setrgbcolor 0.76301 0.39416 0.78261 0.42214 0.82464 0.3777 0.80566 0.3488 Metetra 0.843 0.787 0.797 setrgbcolor 0.80566 0.3488 0.82464 0.3777 0.86625 0.33098 0.84788 0.30115 Metetra 0.195 0.557 0.934 setrgbcolor 0.23864 0.598 0.26442 0.61975 0.30136 0.63027 0.27574 0.60834 Metetra 0.369 0.651 0.965 setrgbcolor 0.27574 0.60834 0.30136 0.63027 0.33974 0.63486 0.31435 0.6127 Metetra 0.496 0.709 0.965 setrgbcolor 0.31435 0.6127 0.33974 0.63486 0.37939 0.63356 0.35431 0.61108 Metetra 0.587 0.743 0.951 setrgbcolor 0.35431 0.61108 0.37939 0.63356 0.42012 0.62646 0.39541 0.60359 Metetra 0.652 0.763 0.93 setrgbcolor 0.39541 0.60359 0.42012 0.62646 0.46174 0.61374 0.43747 0.59038 Metetra 0.7 0.775 0.909 setrgbcolor 0.43747 0.59038 0.46174 0.61374 0.50407 0.59567 0.48028 0.57173 Metetra 0.736 0.782 0.889 setrgbcolor 0.48028 0.57173 0.50407 0.59567 0.5469 0.57253 0.52365 0.54794 Metetra 0.764 0.786 0.871 setrgbcolor 0.52365 0.54794 0.5469 0.57253 0.59007 0.54469 0.56739 0.51937 Metetra 0.785 0.788 0.854 setrgbcolor 0.56739 0.51937 0.59007 0.54469 0.63342 0.51252 0.61133 0.48641 Metetra 0.802 0.789 0.84 setrgbcolor 0.61133 0.48641 0.63342 0.51252 0.67677 0.47644 0.65531 0.44948 Metetra 0.816 0.789 0.827 setrgbcolor 0.65531 0.44948 0.67677 0.47644 0.72001 0.43684 0.69919 0.409 Metetra 0.827 0.789 0.815 setrgbcolor 0.69919 0.409 0.72001 0.43684 0.76301 0.39416 0.74283 0.3654 Metetra 0.837 0.788 0.805 setrgbcolor 0.74283 0.3654 0.76301 0.39416 0.80566 0.3488 0.78612 0.3191 Metetra 0.844 0.787 0.796 setrgbcolor 0.78612 0.3191 0.80566 0.3488 0.84788 0.30115 0.82898 0.27051 Metetra 0.196 0.557 0.934 setrgbcolor 0.2121 0.57561 0.23864 0.598 0.27574 0.60834 0.24935 0.58577 Metetra 0.369 0.651 0.965 setrgbcolor 0.24935 0.58577 0.27574 0.60834 0.31435 0.6127 0.2882 0.58988 Metetra 0.497 0.709 0.965 setrgbcolor 0.2882 0.58988 0.31435 0.6127 0.35431 0.61108 0.32846 0.58793 Metetra 0.588 0.743 0.95 setrgbcolor 0.32846 0.58793 0.35431 0.61108 0.39541 0.60359 0.36994 0.58001 Metetra 0.653 0.763 0.93 setrgbcolor 0.36994 0.58001 0.39541 0.60359 0.43747 0.59038 0.41244 0.56631 Metetra 0.701 0.775 0.909 setrgbcolor 0.41244 0.56631 0.43747 0.59038 0.48028 0.57173 0.45575 0.54707 Metetra 0.737 0.782 0.889 setrgbcolor 0.45575 0.54707 0.48028 0.57173 0.52365 0.54794 0.49967 0.5226 Metetra 0.765 0.786 0.87 setrgbcolor 0.49967 0.5226 0.52365 0.54794 0.56739 0.51937 0.544 0.49329 Metetra 0.786 0.788 0.854 setrgbcolor 0.544 0.49329 0.56739 0.51937 0.61133 0.48641 0.58857 0.45952 Metetra 0.804 0.789 0.839 setrgbcolor 0.58857 0.45952 0.61133 0.48641 0.65531 0.44948 0.63319 0.42172 Metetra 0.817 0.789 0.826 setrgbcolor 0.63319 0.42172 0.65531 0.44948 0.69919 0.409 0.67773 0.38034 Metetra 0.829 0.789 0.815 setrgbcolor 0.67773 0.38034 0.69919 0.409 0.74283 0.3654 0.72204 0.33581 Metetra 0.838 0.789 0.804 setrgbcolor 0.72204 0.33581 0.74283 0.3654 0.78612 0.3191 0.766 0.28857 Metetra 0.845 0.788 0.796 setrgbcolor 0.766 0.28857 0.78612 0.3191 0.82898 0.27051 0.80953 0.23904 Metetra 0.196 0.557 0.934 setrgbcolor 0.18478 0.55256 0.2121 0.57561 0.24935 0.58577 0.22217 0.56252 Metetra 0.37 0.651 0.965 setrgbcolor 0.22217 0.56252 0.24935 0.58577 0.2882 0.58988 0.26125 0.56636 Metetra 0.497 0.709 0.965 setrgbcolor 0.26125 0.56636 0.2882 0.58988 0.32846 0.58793 0.30182 0.56406 Metetra 0.589 0.743 0.95 setrgbcolor 0.30182 0.56406 0.32846 0.58793 0.36994 0.58001 0.34368 0.55571 Metetra 0.655 0.764 0.93 setrgbcolor 0.34368 0.55571 0.36994 0.58001 0.41244 0.56631 0.38663 0.54148 Metetra 0.703 0.775 0.908 setrgbcolor 0.38663 0.54148 0.41244 0.56631 0.45575 0.54707 0.43046 0.52163 Metetra 0.739 0.782 0.888 setrgbcolor 0.43046 0.52163 0.45575 0.54707 0.49967 0.5226 0.47494 0.49648 Metetra 0.766 0.786 0.869 setrgbcolor 0.47494 0.49648 0.49967 0.5226 0.544 0.49329 0.51989 0.46639 Metetra 0.788 0.788 0.853 setrgbcolor 0.51989 0.46639 0.544 0.49329 0.58857 0.45952 0.56509 0.4318 Metetra 0.805 0.789 0.838 setrgbcolor 0.56509 0.4318 0.58857 0.45952 0.63319 0.42172 0.61039 0.39313 Metetra 0.818 0.79 0.825 setrgbcolor 0.61039 0.39313 0.63319 0.42172 0.67773 0.38034 0.65561 0.35083 Metetra 0.83 0.789 0.814 setrgbcolor 0.65561 0.35083 0.67773 0.38034 0.72204 0.33581 0.70061 0.30537 Metetra 0.839 0.789 0.804 setrgbcolor 0.70061 0.30537 0.72204 0.33581 0.766 0.28857 0.74528 0.25718 Metetra 0.847 0.788 0.795 setrgbcolor 0.74528 0.25718 0.766 0.28857 0.80953 0.23904 0.78951 0.20669 Metetra 0.196 0.557 0.934 setrgbcolor 0.15664 0.52881 0.18478 0.55256 0.22217 0.56252 0.19416 0.53855 Metetra 0.37 0.652 0.965 setrgbcolor 0.19416 0.53855 0.22217 0.56252 0.26125 0.56636 0.23346 0.54211 Metetra 0.498 0.709 0.965 setrgbcolor 0.23346 0.54211 0.26125 0.56636 0.30182 0.56406 0.27434 0.53945 Metetra 0.59 0.744 0.95 setrgbcolor 0.27434 0.53945 0.30182 0.56406 0.34368 0.55571 0.31659 0.53065 Metetra 0.656 0.764 0.929 setrgbcolor 0.31659 0.53065 0.34368 0.55571 0.38663 0.54148 0.36001 0.51587 Metetra 0.704 0.776 0.908 setrgbcolor 0.36001 0.51587 0.38663 0.54148 0.43046 0.52163 0.40436 0.49539 Metetra 0.74 0.782 0.887 setrgbcolor 0.40436 0.49539 0.43046 0.52163 0.47494 0.49648 0.44943 0.46952 Metetra 0.767 0.786 0.869 setrgbcolor 0.44943 0.46952 0.47494 0.49648 0.51989 0.46639 0.495 0.43866 Metetra 0.789 0.788 0.852 setrgbcolor 0.495 0.43866 0.51989 0.46639 0.56509 0.4318 0.54087 0.40322 Metetra 0.806 0.789 0.837 setrgbcolor 0.54087 0.40322 0.56509 0.4318 0.61039 0.39313 0.58686 0.36365 Metetra 0.82 0.79 0.824 setrgbcolor 0.58686 0.36365 0.61039 0.39313 0.65561 0.35083 0.63279 0.32043 Metetra 0.831 0.79 0.813 setrgbcolor 0.63279 0.32043 0.65561 0.35083 0.70061 0.30537 0.67852 0.27401 Metetra 0.84 0.789 0.803 setrgbcolor 0.67852 0.27401 0.70061 0.30537 0.74528 0.25718 0.72392 0.22486 Metetra 0.848 0.789 0.794 setrgbcolor 0.72392 0.22486 0.74528 0.25718 0.78951 0.20669 0.76887 0.17341 Metetra 0.196 0.557 0.934 setrgbcolor 0.12764 0.50434 0.15664 0.52881 0.19416 0.53855 0.16529 0.51385 Metetra 0.371 0.652 0.965 setrgbcolor 0.16529 0.51385 0.19416 0.53855 0.23346 0.54211 0.2048 0.5171 Metetra 0.499 0.71 0.965 setrgbcolor 0.2048 0.5171 0.23346 0.54211 0.27434 0.53945 0.24599 0.51405 Metetra 0.591 0.744 0.95 setrgbcolor 0.24599 0.51405 0.27434 0.53945 0.31659 0.53065 0.28864 0.50478 Metetra 0.657 0.764 0.929 setrgbcolor 0.28864 0.50478 0.31659 0.53065 0.36001 0.51587 0.33252 0.48944 Metetra 0.705 0.776 0.907 setrgbcolor 0.33252 0.48944 0.36001 0.51587 0.40436 0.49539 0.37741 0.46831 Metetra 0.741 0.783 0.887 setrgbcolor 0.37741 0.46831 0.40436 0.49539 0.44943 0.46952 0.42308 0.44171 Metetra 0.768 0.787 0.868 setrgbcolor 0.42308 0.44171 0.44943 0.46952 0.495 0.43866 0.4693 0.41004 Metetra 0.79 0.789 0.851 setrgbcolor 0.4693 0.41004 0.495 0.43866 0.54087 0.40322 0.51587 0.37373 Metetra 0.807 0.79 0.837 setrgbcolor 0.51587 0.37373 0.54087 0.40322 0.58686 0.36365 0.56257 0.33325 Metetra 0.821 0.79 0.824 setrgbcolor 0.56257 0.33325 0.58686 0.36365 0.63279 0.32043 0.60925 0.28909 Metetra 0.832 0.79 0.812 setrgbcolor 0.60925 0.28909 0.63279 0.32043 0.67852 0.27401 0.65573 0.24171 Metetra 0.841 0.79 0.802 setrgbcolor 0.65573 0.24171 0.67852 0.27401 0.72392 0.22486 0.70189 0.19158 Metetra 0.849 0.789 0.793 setrgbcolor 0.70189 0.19158 0.72392 0.22486 0.76887 0.17341 0.7476 0.13916 Metetra 0.196 0.557 0.934 setrgbcolor 0.09773 0.47912 0.12764 0.50434 0.16529 0.51385 0.1355 0.48836 Metetra 0.371 0.652 0.965 setrgbcolor 0.1355 0.48836 0.16529 0.51385 0.2048 0.5171 0.17523 0.49129 Metetra 0.5 0.71 0.965 setrgbcolor 0.17523 0.49129 0.2048 0.5171 0.24599 0.51405 0.21672 0.48784 Metetra 0.592 0.744 0.949 setrgbcolor 0.21672 0.48784 0.24599 0.51405 0.28864 0.50478 0.25977 0.47806 Metetra 0.658 0.764 0.928 setrgbcolor 0.25977 0.47806 0.28864 0.50478 0.33252 0.48944 0.30413 0.46214 Metetra 0.706 0.776 0.907 setrgbcolor 0.30413 0.46214 0.33252 0.48944 0.37741 0.46831 0.34958 0.44033 Metetra 0.742 0.783 0.886 setrgbcolor 0.34958 0.44033 0.37741 0.46831 0.42308 0.44171 0.39587 0.41298 Metetra 0.769 0.787 0.867 setrgbcolor 0.39587 0.41298 0.42308 0.44171 0.4693 0.41004 0.44276 0.38048 Metetra 0.791 0.789 0.851 setrgbcolor 0.44276 0.38048 0.4693 0.41004 0.51587 0.37373 0.49004 0.34329 Metetra 0.808 0.79 0.836 setrgbcolor 0.49004 0.34329 0.51587 0.37373 0.56257 0.33325 0.53749 0.30189 Metetra 0.822 0.79 0.823 setrgbcolor 0.53749 0.30189 0.56257 0.33325 0.60925 0.28909 0.58494 0.25676 Metetra 0.833 0.79 0.811 setrgbcolor 0.58494 0.25676 0.60925 0.28909 0.65573 0.24171 0.63221 0.2084 Metetra 0.842 0.79 0.801 setrgbcolor 0.63221 0.2084 0.65573 0.24171 0.70189 0.19158 0.67915 0.15729 Metetra 0.85 0.79 0.793 setrgbcolor 0.67915 0.15729 0.70189 0.19158 0.7476 0.13916 0.72565 0.10389 Metetra 0.196 0.557 0.934 setrgbcolor 0.06689 0.45309 0.09773 0.47912 0.1355 0.48836 0.10476 0.46206 Metetra 0.371 0.652 0.965 setrgbcolor 0.10476 0.46206 0.1355 0.48836 0.17523 0.49129 0.1447 0.46464 Metetra 0.5 0.71 0.965 setrgbcolor 0.1447 0.46464 0.17523 0.49129 0.21672 0.48784 0.1865 0.46076 Metetra 0.593 0.745 0.949 setrgbcolor 0.1865 0.46076 0.21672 0.48784 0.25977 0.47806 0.22995 0.45047 Metetra 0.659 0.765 0.928 setrgbcolor 0.22995 0.45047 0.25977 0.47806 0.30413 0.46214 0.2748 0.43394 Metetra 0.707 0.776 0.906 setrgbcolor 0.2748 0.43394 0.30413 0.46214 0.34958 0.44033 0.32082 0.41143 Metetra 0.743 0.783 0.885 setrgbcolor 0.32082 0.41143 0.34958 0.44033 0.39587 0.41298 0.36774 0.3833 Metetra 0.77 0.787 0.867 setrgbcolor 0.36774 0.3833 0.39587 0.41298 0.44276 0.38048 0.41533 0.34995 Metetra 0.792 0.789 0.85 setrgbcolor 0.41533 0.34995 0.44276 0.38048 0.49004 0.34329 0.46335 0.31186 Metetra 0.809 0.79 0.835 setrgbcolor 0.46335 0.31186 0.49004 0.34329 0.53749 0.30189 0.51158 0.2695 Metetra 0.823 0.791 0.822 setrgbcolor 0.51158 0.2695 0.53749 0.30189 0.58494 0.25676 0.55982 0.22339 Metetra 0.834 0.791 0.811 setrgbcolor 0.55982 0.22339 0.58494 0.25676 0.63221 0.2084 0.60791 0.17404 Metetra 0.843 0.791 0.801 setrgbcolor 0.60791 0.17404 0.63221 0.2084 0.67915 0.15729 0.65568 0.12193 Metetra 0.851 0.79 0.792 setrgbcolor 0.65568 0.12193 0.67915 0.15729 0.72565 0.10389 0.70301 0.06754 Metetra 0.196 0.557 0.934 setrgbcolor 0.03506 0.42624 0.06689 0.45309 0.10476 0.46206 0.07303 0.43491 Metetra 0.372 0.652 0.965 setrgbcolor 0.07303 0.43491 0.10476 0.46206 0.1447 0.46464 0.11316 0.43712 Metetra 0.501 0.711 0.965 setrgbcolor 0.11316 0.43712 0.1447 0.46464 0.1865 0.46076 0.15526 0.43278 Metetra 0.593 0.745 0.949 setrgbcolor 0.15526 0.43278 0.1865 0.46076 0.22995 0.45047 0.19912 0.42195 Metetra 0.66 0.765 0.928 setrgbcolor 0.19912 0.42195 0.22995 0.45047 0.2748 0.43394 0.24447 0.40478 Metetra 0.708 0.777 0.906 setrgbcolor 0.24447 0.40478 0.2748 0.43394 0.32082 0.41143 0.29107 0.38155 Metetra 0.744 0.783 0.885 setrgbcolor 0.29107 0.38155 0.32082 0.41143 0.36774 0.3833 0.33865 0.35261 Metetra 0.771 0.787 0.866 setrgbcolor 0.33865 0.35261 0.36774 0.3833 0.41533 0.34995 0.38696 0.31839 Metetra 0.793 0.789 0.849 setrgbcolor 0.38696 0.31839 0.41533 0.34995 0.46335 0.31186 0.43575 0.27937 Metetra 0.81 0.79 0.834 setrgbcolor 0.43575 0.27937 0.46335 0.31186 0.51158 0.2695 0.48479 0.23604 Metetra 0.824 0.791 0.821 setrgbcolor 0.48479 0.23604 0.51158 0.2695 0.55982 0.22339 0.53386 0.18894 Metetra 0.835 0.791 0.81 setrgbcolor 0.53386 0.18894 0.55982 0.22339 0.60791 0.17404 0.5828 0.13857 Metetra 0.844 0.791 0.8 setrgbcolor 0.5828 0.13857 0.60791 0.17404 0.65568 0.12193 0.63143 0.08544 Metetra 0.852 0.791 0.791 setrgbcolor 0.63143 0.08544 0.65568 0.12193 0.70301 0.06754 0.67962 0.03005 Metetra grestore gsave 0.002 setlinewidth 0.67932 0.02494 moveto 0.94594 0.43277 lineto stroke 0.94594 0.43277 moveto 0.97506 0.64585 lineto stroke 0.97506 0.64585 moveto 0.69286 0.25814 lineto stroke 0.69286 0.25814 moveto 0.67932 0.02494 lineto stroke 0.06024 0.26735 moveto 0.02494 0.49015 lineto stroke 0.02494 0.49015 moveto 0.69286 0.25814 lineto stroke 0.69286 0.25814 moveto 0.67932 0.02494 lineto stroke 0.67932 0.02494 moveto 0.06024 0.26735 lineto stroke grestore gsave gsave 0.002 setlinewidth 0.06024 0.26735 moveto 0.67932 0.02494 lineto stroke grestore gsave 0.002 setlinewidth 0.06024 0.26735 moveto 0.0648 0.2716 lineto stroke grestore [(0)] 0.05113 0.25884 1 0.933946 Mshowa gsave 0.002 setlinewidth 0.17239 0.22343 moveto 0.17677 0.22787 lineto stroke grestore [(0.2)] 0.16364 0.21456 0.987329 1 Mshowa gsave 0.002 setlinewidth 0.28996 0.1774 moveto 0.29414 0.18202 lineto stroke grestore [(0.4)] 0.2816 0.16815 0.903932 1 Mshowa gsave 0.002 setlinewidth 0.41333 0.12909 moveto 0.41729 0.13391 lineto stroke grestore [(0.6)] 0.40542 0.11945 0.820535 1 Mshowa gsave 0.002 setlinewidth 0.54296 0.07833 moveto 0.54666 0.08335 lineto stroke grestore [(0.8)] 0.53556 0.0683 0.737139 1 Mshowa gsave 0.002 setlinewidth 0.67932 0.02494 moveto 0.68274 0.03015 lineto stroke grestore [(1)] 0.6725 0.0145 0.653742 1 Mshowa gsave 0.001 setlinewidth 0.08226 0.25873 moveto 0.08497 0.2613 lineto stroke grestore gsave 0.001 setlinewidth 0.10448 0.25003 moveto 0.10717 0.25262 lineto stroke grestore gsave 0.001 setlinewidth 0.12691 0.24125 moveto 0.12958 0.24386 lineto stroke grestore gsave 0.001 setlinewidth 0.14954 0.23238 moveto 0.15219 0.23502 lineto stroke grestore gsave 0.001 setlinewidth 0.19546 0.2144 moveto 0.19807 0.21708 lineto stroke grestore gsave 0.001 setlinewidth 0.21875 0.20528 moveto 0.22133 0.20799 lineto stroke grestore gsave 0.001 setlinewidth 0.24226 0.19608 moveto 0.24482 0.19881 lineto stroke grestore gsave 0.001 setlinewidth 0.26599 0.18678 moveto 0.26853 0.18953 lineto stroke grestore gsave 0.001 setlinewidth 0.31415 0.16792 moveto 0.31664 0.17072 lineto stroke grestore gsave 0.001 setlinewidth 0.33859 0.15836 moveto 0.34104 0.16118 lineto stroke grestore gsave 0.001 setlinewidth 0.36326 0.1487 moveto 0.36569 0.15154 lineto stroke grestore gsave 0.001 setlinewidth 0.38817 0.13894 moveto 0.39057 0.14181 lineto stroke grestore gsave 0.001 setlinewidth 0.43874 0.11914 moveto 0.44108 0.12206 lineto stroke grestore gsave 0.001 setlinewidth 0.4644 0.10909 moveto 0.46672 0.11203 lineto stroke grestore gsave 0.001 setlinewidth 0.49033 0.09894 moveto 0.49261 0.1019 lineto stroke grestore gsave 0.001 setlinewidth 0.51651 0.08869 moveto 0.51876 0.09168 lineto stroke grestore gsave 0.001 setlinewidth 0.56967 0.06787 moveto 0.57186 0.07091 lineto stroke grestore gsave 0.001 setlinewidth 0.59667 0.0573 moveto 0.59882 0.06036 lineto stroke grestore gsave 0.001 setlinewidth 0.62394 0.04662 moveto 0.62605 0.04971 lineto stroke grestore gsave 0.001 setlinewidth 0.65149 0.03584 moveto 0.65357 0.03894 lineto stroke grestore [(t)] 0.30204 0.09689 0.862234 1 Mshowa grestore gsave gsave 0.002 setlinewidth 0.67932 0.02494 moveto 0.94594 0.43277 lineto stroke grestore gsave 0.002 setlinewidth 0.67932 0.02494 moveto 0.67352 0.02721 lineto stroke grestore [(-2)] 0.69093 0.02039 -1 0.391569 Mshowa gsave 0.002 setlinewidth 0.74907 0.13163 moveto 0.74322 0.13377 lineto stroke grestore [(-1.8)] 0.76078 0.12733 -1 0.366986 Mshowa gsave 0.002 setlinewidth 0.8121 0.22803 moveto 0.8062 0.23007 lineto stroke grestore [(-1.6)] 0.82388 0.22396 -1 0.345307 Mshowa gsave 0.002 setlinewidth 0.86933 0.31557 moveto 0.8634 0.31751 lineto stroke grestore [(-1.4)] 0.88118 0.31171 -1 0.326047 Mshowa gsave 0.002 setlinewidth 0.92153 0.39542 moveto 0.91557 0.39726 lineto stroke grestore [(-1.2)] 0.93344 0.39174 -1 0.308822 Mshowa gsave 0.001 setlinewidth 0.69386 0.04717 moveto 0.69037 0.04852 lineto stroke grestore gsave 0.001 setlinewidth 0.7081 0.06895 moveto 0.7046 0.07028 lineto stroke grestore gsave 0.001 setlinewidth 0.72204 0.09027 moveto 0.71854 0.09159 lineto stroke grestore gsave 0.001 setlinewidth 0.73569 0.11116 moveto 0.73219 0.11246 lineto stroke grestore gsave 0.001 setlinewidth 0.76218 0.15168 moveto 0.75867 0.15295 lineto stroke grestore gsave 0.001 setlinewidth 0.77503 0.17134 moveto 0.77151 0.1726 lineto stroke grestore gsave 0.001 setlinewidth 0.78763 0.19061 moveto 0.7841 0.19185 lineto stroke grestore gsave 0.001 setlinewidth 0.79998 0.2095 moveto 0.79645 0.21074 lineto stroke grestore gsave 0.001 setlinewidth 0.82398 0.24621 moveto 0.82044 0.24742 lineto stroke grestore gsave 0.001 setlinewidth 0.83564 0.26404 moveto 0.83209 0.26524 lineto stroke grestore gsave 0.001 setlinewidth 0.84708 0.28154 moveto 0.84353 0.28272 lineto stroke grestore gsave 0.001 setlinewidth 0.85831 0.29872 moveto 0.85475 0.29989 lineto stroke grestore gsave 0.001 setlinewidth 0.88015 0.33213 moveto 0.87659 0.33327 lineto stroke grestore gsave 0.001 setlinewidth 0.89077 0.34838 moveto 0.88721 0.34951 lineto stroke grestore gsave 0.001 setlinewidth 0.90121 0.36434 moveto 0.89764 0.36546 lineto stroke grestore gsave 0.001 setlinewidth 0.91146 0.38002 moveto 0.90789 0.38113 lineto stroke grestore gsave 0.001 setlinewidth 0.93142 0.41055 moveto 0.92784 0.41165 lineto stroke grestore gsave 0.001 setlinewidth 0.94114 0.42543 moveto 0.93756 0.42651 lineto stroke grestore [(a)] 0.89773 0.2266 -1 0.340282 Mshowa grestore gsave gsave 0.002 setlinewidth 0.06024 0.26735 moveto 0.02494 0.49015 lineto stroke grestore gsave 0.002 setlinewidth 0.05759 0.28407 moveto 0.0634 0.28181 lineto stroke grestore [(3.8)] 0.04597 0.28858 1 -0.388274 Mshowa gsave 0.002 setlinewidth 0.04659 0.35348 moveto 0.05243 0.35129 lineto stroke grestore [(3.9)] 0.03492 0.35785 1 -0.374557 Mshowa gsave 0.002 setlinewidth 0.03506 0.42624 moveto 0.04093 0.42413 lineto stroke grestore [(4)] 0.02333 0.43046 1 -0.360108 Mshowa gsave 0.001 setlinewidth 0.05543 0.29769 moveto 0.05892 0.29635 lineto stroke grestore gsave 0.001 setlinewidth 0.05325 0.31144 moveto 0.05675 0.31011 lineto stroke grestore gsave 0.001 setlinewidth 0.05105 0.32532 moveto 0.05455 0.324 lineto stroke grestore gsave 0.001 setlinewidth 0.04883 0.33933 moveto 0.05233 0.33801 lineto stroke grestore gsave 0.001 setlinewidth 0.04433 0.36775 moveto 0.04784 0.36645 lineto stroke grestore gsave 0.001 setlinewidth 0.04205 0.38216 moveto 0.04556 0.38087 lineto stroke grestore gsave 0.001 setlinewidth 0.03974 0.39671 moveto 0.04325 0.39543 lineto stroke grestore gsave 0.001 setlinewidth 0.03741 0.41141 moveto 0.04093 0.41013 lineto stroke grestore gsave 0.001 setlinewidth 0.05973 0.27057 moveto 0.06322 0.26921 lineto stroke grestore gsave 0.001 setlinewidth 0.03269 0.44121 moveto 0.03621 0.43996 lineto stroke grestore gsave 0.001 setlinewidth 0.03029 0.45634 moveto 0.03382 0.45509 lineto stroke grestore gsave 0.001 setlinewidth 0.02787 0.47161 moveto 0.0314 0.47037 lineto stroke grestore gsave 0.001 setlinewidth 0.02543 0.48703 moveto 0.02896 0.4858 lineto stroke grestore [( )] -0.02691 0.40064 1 -0.370357 Mshowa grestore % End of Graphics MathPictureEnd :[font = output; output; inactive; preserveAspect; endGroup; ] The Unformatted text for this cell was not generated. Use options in the Actions Settings dialog box to control when Unformatted text is generated. ;[o] -SurfaceGraphics- :[font = text; inactive; preserveAspect; ] Alternatively, we could set a to a constant value and plot y(t). For a = -2, y(t) is plotted below: :[font = input; Cclosed; preserveAspect; startGroup; ] Plot[ Release[yicsol /. a -> -2], {t, 0, 2}, AxesLabel -> { "t", "y(t)" } ] :[font = postscript; PostScript; formatAsPostScript; output; inactive; preserveAspect; pictureLeft = 17; pictureWidth = 389; pictureHeight = 239; ] %! %%Creator: Mathematica %%AspectRatio: 0.61803 MathPictureStart /Courier findfont 10 scalefont setfont % Scaling calculations 0.02381 0.47619 -1.382056 0.487311 [ [(0.5)] 0.2619 0.07988 0 2 Msboxa [(1)] 0.5 0.07988 0 2 Msboxa [(1.5)] 0.7381 0.07988 0 2 Msboxa [(2)] 0.97619 0.07988 0 2 Msboxa [(t)] 1.025 0.07988 -1 0 Msboxa [(3.2)] 0.01131 0.17734 1 0 Msboxa [(3.4)] 0.01131 0.2748 1 0 Msboxa [(3.6)] 0.01131 0.37226 1 0 Msboxa [(3.8)] 0.01131 0.46972 1 0 Msboxa [(4)] 0.01131 0.56719 1 0 Msboxa [(y\(t\))] 0.02381 0.61803 0 -4 Msboxa [ -0.001 -0.001 0 0 ] [ 1.001 0.61903 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath %%Object: Graphics [ ] 0 setdash 0 setgray gsave gsave 0.002 setlinewidth 0.2619 0.07988 moveto 0.2619 0.08613 lineto stroke grestore [(0.5)] 0.2619 0.07988 0 2 Mshowa gsave 0.002 setlinewidth 0.5 0.07988 moveto 0.5 0.08613 lineto stroke grestore [(1)] 0.5 0.07988 0 2 Mshowa gsave 0.002 setlinewidth 0.7381 0.07988 moveto 0.7381 0.08613 lineto stroke grestore [(1.5)] 0.7381 0.07988 0 2 Mshowa gsave 0.002 setlinewidth 0.97619 0.07988 moveto 0.97619 0.08613 lineto stroke grestore [(2)] 0.97619 0.07988 0 2 Mshowa gsave 0.001 setlinewidth 0.07143 0.07988 moveto 0.07143 0.08363 lineto stroke grestore gsave 0.001 setlinewidth 0.11905 0.07988 moveto 0.11905 0.08363 lineto stroke grestore gsave 0.001 setlinewidth 0.16667 0.07988 moveto 0.16667 0.08363 lineto stroke grestore gsave 0.001 setlinewidth 0.21429 0.07988 moveto 0.21429 0.08363 lineto stroke grestore gsave 0.001 setlinewidth 0.30952 0.07988 moveto 0.30952 0.08363 lineto stroke grestore gsave 0.001 setlinewidth 0.35714 0.07988 moveto 0.35714 0.08363 lineto stroke grestore gsave 0.001 setlinewidth 0.40476 0.07988 moveto 0.40476 0.08363 lineto stroke grestore gsave 0.001 setlinewidth 0.45238 0.07988 moveto 0.45238 0.08363 lineto stroke grestore gsave 0.001 setlinewidth 0.54762 0.07988 moveto 0.54762 0.08363 lineto stroke grestore gsave 0.001 setlinewidth 0.59524 0.07988 moveto 0.59524 0.08363 lineto stroke grestore gsave 0.001 setlinewidth 0.64286 0.07988 moveto 0.64286 0.08363 lineto stroke grestore gsave 0.001 setlinewidth 0.69048 0.07988 moveto 0.69048 0.08363 lineto stroke grestore gsave 0.001 setlinewidth 0.78571 0.07988 moveto 0.78571 0.08363 lineto stroke grestore gsave 0.001 setlinewidth 0.83333 0.07988 moveto 0.83333 0.08363 lineto stroke grestore gsave 0.001 setlinewidth 0.88095 0.07988 moveto 0.88095 0.08363 lineto stroke grestore gsave 0.001 setlinewidth 0.92857 0.07988 moveto 0.92857 0.08363 lineto stroke grestore [(t)] 1.025 0.07988 -1 0 Mshowa gsave 0.002 setlinewidth 0 0.07988 moveto 1 0.07988 lineto stroke grestore gsave 0.002 setlinewidth 0.02381 0.17734 moveto 0.03006 0.17734 lineto stroke grestore [(3.2)] 0.01131 0.17734 1 0 Mshowa gsave 0.002 setlinewidth 0.02381 0.2748 moveto 0.03006 0.2748 lineto stroke grestore [(3.4)] 0.01131 0.2748 1 0 Mshowa gsave 0.002 setlinewidth 0.02381 0.37226 moveto 0.03006 0.37226 lineto stroke grestore [(3.6)] 0.01131 0.37226 1 0 Mshowa gsave 0.002 setlinewidth 0.02381 0.46972 moveto 0.03006 0.46972 lineto stroke grestore [(3.8)] 0.01131 0.46972 1 0 Mshowa gsave 0.002 setlinewidth 0.02381 0.56719 moveto 0.03006 0.56719 lineto stroke grestore [(4)] 0.01131 0.56719 1 0 Mshowa gsave 0.001 setlinewidth 0.02381 0.09937 moveto 0.02756 0.09937 lineto stroke grestore gsave 0.001 setlinewidth 0.02381 0.11886 moveto 0.02756 0.11886 lineto stroke grestore gsave 0.001 setlinewidth 0.02381 0.13835 moveto 0.02756 0.13835 lineto stroke grestore gsave 0.001 setlinewidth 0.02381 0.15785 moveto 0.02756 0.15785 lineto stroke grestore gsave 0.001 setlinewidth 0.02381 0.19683 moveto 0.02756 0.19683 lineto stroke grestore gsave 0.001 setlinewidth 0.02381 0.21632 moveto 0.02756 0.21632 lineto stroke grestore gsave 0.001 setlinewidth 0.02381 0.23582 moveto 0.02756 0.23582 lineto stroke grestore gsave 0.001 setlinewidth 0.02381 0.25531 moveto 0.02756 0.25531 lineto stroke grestore gsave 0.001 setlinewidth 0.02381 0.29429 moveto 0.02756 0.29429 lineto stroke grestore gsave 0.001 setlinewidth 0.02381 0.31379 moveto 0.02756 0.31379 lineto stroke grestore gsave 0.001 setlinewidth 0.02381 0.33328 moveto 0.02756 0.33328 lineto stroke grestore gsave 0.001 setlinewidth 0.02381 0.35277 moveto 0.02756 0.35277 lineto stroke grestore gsave 0.001 setlinewidth 0.02381 0.39176 moveto 0.02756 0.39176 lineto stroke grestore gsave 0.001 setlinewidth 0.02381 0.41125 moveto 0.02756 0.41125 lineto stroke grestore gsave 0.001 setlinewidth 0.02381 0.43074 moveto 0.02756 0.43074 lineto stroke grestore gsave 0.001 setlinewidth 0.02381 0.45023 moveto 0.02756 0.45023 lineto stroke grestore gsave 0.001 setlinewidth 0.02381 0.48922 moveto 0.02756 0.48922 lineto stroke grestore gsave 0.001 setlinewidth 0.02381 0.50871 moveto 0.02756 0.50871 lineto stroke grestore gsave 0.001 setlinewidth 0.02381 0.5282 moveto 0.02756 0.5282 lineto stroke grestore gsave 0.001 setlinewidth 0.02381 0.54769 moveto 0.02756 0.54769 lineto stroke grestore gsave 0.001 setlinewidth 0.02381 0.06038 moveto 0.02756 0.06038 lineto stroke grestore gsave 0.001 setlinewidth 0.02381 0.04089 moveto 0.02756 0.04089 lineto stroke grestore gsave 0.001 setlinewidth 0.02381 0.0214 moveto 0.02756 0.0214 lineto stroke grestore gsave 0.001 setlinewidth 0.02381 0.00191 moveto 0.02756 0.00191 lineto stroke grestore gsave 0.001 setlinewidth 0.02381 0.58668 moveto 0.02756 0.58668 lineto stroke grestore gsave 0.001 setlinewidth 0.02381 0.60617 moveto 0.02756 0.60617 lineto stroke grestore [(y\(t\))] 0.02381 0.61803 0 -4 Mshowa gsave 0.002 setlinewidth 0.02381 0 moveto 0.02381 0.61803 lineto stroke grestore grestore 0 0 moveto 1 0 lineto 1 0.61803 lineto 0 0.61803 lineto closepath clip newpath gsave gsave 0.004 setlinewidth 0.02381 0.56719 moveto 0.04365 0.5766 lineto 0.06349 0.58455 lineto 0.08333 0.59106 lineto 0.10317 0.59615 lineto 0.12302 0.59986 lineto 0.13294 0.60121 lineto 0.1379 0.60175 lineto 0.14286 0.60222 lineto 0.14782 0.6026 lineto 0.15278 0.6029 lineto 0.15526 0.60302 lineto 0.15774 0.60312 lineto 0.16022 0.6032 lineto 0.1627 0.60326 lineto 0.16394 0.60328 lineto 0.16518 0.6033 lineto 0.16642 0.60331 lineto 0.16766 0.60332 lineto 0.1689 0.60332 lineto 0.17014 0.60332 lineto 0.17138 0.60331 lineto 0.17262 0.6033 lineto 0.17386 0.60328 lineto 0.1751 0.60326 lineto 0.17758 0.6032 lineto 0.18006 0.60312 lineto 0.18254 0.60302 lineto 0.1875 0.60277 lineto 0.19246 0.60244 lineto 0.20238 0.60155 lineto 0.2123 0.60037 lineto 0.22222 0.59889 lineto 0.24206 0.59508 lineto 0.2619 0.59016 lineto 0.30159 0.57719 lineto 0.34127 0.56035 lineto 0.38095 0.53998 lineto 0.42063 0.51645 lineto 0.46032 0.49009 lineto 0.5 0.46122 lineto 0.53968 0.43016 lineto 0.57937 0.39721 lineto 0.61905 0.36263 lineto 0.65873 0.32668 lineto 0.69841 0.2896 lineto 0.7381 0.25161 lineto 0.77778 0.21291 lineto 0.81746 0.17368 lineto 0.85714 0.13411 lineto Mistroke 0.89683 0.09433 lineto 0.93651 0.05449 lineto 0.97619 0.01472 lineto Mfstroke grestore grestore % End of Graphics MathPictureEnd :[font = output; output; inactive; preserveAspect; endGroup; endGroup; endGroup; ] The Unformatted text for this cell was not generated. Use options in the Actions Settings dialog box to control when Unformatted text is generated. ;[o] -Graphics- ^*)